[1] WANG H, CHEN X Z, ZHANG T X, et al. CCTNet: coupled CNN and transformer network for crop segmentation of remote sensing images[J]. Remote Sensing, 2022, 14(9): 1956.
[2] 王浩桐, 郭中华. 锚框策略匹配的SSD飞机遥感图像目标检测[J]. 计算机科学与探索, 2022, 16(11): 2596-2608.
WANG H T, GUO Z H. Target detection of SSD aircraft remote sensing images based on anchor frame strategy matching[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2596-2608.
[3] SHAO Z F, ZHOU W X, DENG X Q, et al. Multilabel remote sensing image retrieval based on fully convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 318-328.
[4] YE F M, WU K L, ZHANG R G, et al. Multi-scale feature fusion based on PVTv2 for deep hash remote sensing image retrieval[J]. Remote Sensing, 2023, 15(19): 4729.
[5] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002.
[6] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning, Jul 18-24, 2021: 10347-10357.
[7] 苗壮, 赵昕昕, 李阳, 等. 基于Swin Transformer的深度有监督哈希图像检索方法[J]. 湖南大学学报(自然科学版), 2023, 50(8): 62-71.
MIAO Z, ZHAO X X, LI Y, et al. Deep supervised hashing image retrieval method based on Swin Transformer[J]. Journal of Hunan University (Natural Sciences), 2023, 50(8): 62-71.
[8] YANG Y, NEWSAM S. Geographic image retrieval using local invariant features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 818-832.
[9] XIA G S, HU J W, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[11] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations, Vienna, May 3-7, 2021.
[12] RAHHAL M M A, BENCHERIF M A, BAZI Y, et al. Contrasting dual transformer architectures for multi-modal remote sensing image retrieval[J]. Applied Sciences, 2022, 13(1): 282.
[13] AL RAHHAL M M, BAZI Y, ALSHARIF N A, et al. Multilanguage transformer for improved text to remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9115-9126.
[14] CHEN Y X, WANG F, LU L, et al. Unsupervised transformer balanced hashing for multispectral remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 7089-7099.
[15] GIONIS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing[C]//Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, Sep 7-10, 1999. San Francisco: Morgan Kaufmann, 1999: 518-529.
[16] LI P, HAN L R, TAO X W, et al. Hashing nets for hashing: a quantized deep learning to hash framework for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7331-7345.
[17] TAN X Y, ZOU Y, GUO Z Y, et al. Deep contrastive self-supervised hashing for remote sensing image retrieval[J]. Remote Sensing, 2022, 14(15): 3643.
[18] SCHROFF F, KALENICHENKO D, PHILBIN J. FaceNet: a unified embedding for face recognition and clustering[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 815-823.
[19] LIU H M, WANG R P, SHAN S G, et al. Deep supervised hashing for fast image retrieval[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2064-2072.
[20] SU S P, ZHANG C, HAN K, et al. Greedy hash: towards fast optimization for accurate hash coding in CNN[C]//Advances in Neural Information Processing Systems 31, Montréal, Dec 3-8, 2018: 806-815.
[21] CAO Z J, LONG M S, WANG J M, et al. HashNet: deep learning to hash by continuation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5608-5617.
[22] YUAN L, WANG T, ZHANG X P, et al. Central similarity quantization for efficient image and video retrieval[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020.Piscataway: IEEE, 2020: 3080-3089.
[23] WANG L D, PAN Y, LAI H J, et al. Image retrieval with well-separated semantic hash centers[C]//Proceedings of the 2022 Asian Conference on Computer Vision, Macao, China, Dec 1-8, 2022. Cham: Springer, 2022: 978-994.
[24] ROY S, SANGINETO E, DEMIR B, et al. Metric-learning-based deep hashing network for content-based retrieval of remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(2): 226-230.
[25] WANG Y M, JI S P, LU M, et al. Attention boosted bilinear pooling for remote sensing image retrieval[J]. International Journal of Remote Sensing, 2020, 41(7): 2704-2724.
[26] YE F M, DONG M, LUO W, et al. A new re-ranking method based on convolutional neural network and two image-to-class distances for remote sensing image retrieval[J]. IEEE Access, 2019, 7: 141498-141507.
[27] 叶发茂, 孟祥龙, 董萌, 等. 遥感图像蚁群算法和加权图像到类距离检索法[J]. 测绘学报, 2021, 50(5): 612-620.
YE F M, MENG X L, DONG M, et al. Remote sensing image retrieval with ant colony optimization and a weighted image-to-class distance[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 612-620.
[28] ZHUO Z, ZHOU Z. Remote sensing image retrieval with Gabor-CA-ResNet and split-based deep feature transform network[J]. Remote Sensing, 2021, 13(5): 869.
[29] ZHANG M D, CHENG Q M, LUO F, et al. A triplet nonlocal neural network with dual-anchor triplet loss for high-resolution remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2711-2723.
[30] SONG W W, LI S T, BENEDIKTSSON J A. Deep hashing learning for visual and semantic retrieval of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(11): 9661-9672.
[31] LIU C, MA J J, TANG X, et al. Deep hash learning for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(4): 3420-3443.
[32] SONG W W, GAO Z, DIAN R W, et al. Asymmetric hash code learning for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
[33] LI X Y, WEI S, WANG J, et al. Adaptive multi-proxy for remote sensing image retrieval[J]. Remote Sensing, 2022, 14(21): 5615.
[34] HUANG M L, DONG L, DONG W S, et al. Supervised contrastive learning based on fusion of global and local features for remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-13. |