[1] WANG X, YAMAGISHI J. A practical guide to logical access voice presentation attack detection[M/OL]//Frontiers in fake media generation and detection. Singapore: Springer, 2022: 169-214 [2023-12-11]. https://link.springer.com/10.1007/ 978-981-19-1524-6_8.
[2] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681-4690.
[3] 周晔, 章坚武, 程继承. 面向复杂声学环境的伪装语音检测[J]. 传感技术学报, 2022, 35(10): 1355-1362.
ZHOU Y, ZHANG J W, CHENG J C. Speech anti-spoofing for complex acoustic environments[J]. Chinese Journal of Sensors and Actuators, 2022, 35(10): 1355-1362.
[4] 任延珍, 刘晨雨, 刘武洋, 等. 语音伪造及检测技术研究综述[J]. 信号处理, 2021, 37(12): 2412-2439.
REN Y Z, LIU C Y, LIU W Y, et al. A survey on speech forgery and detection[J]. Journal of Signal Processing, 2021, 37(12): 2412-2439.
[5] YANG J C, DAS R K, ZHOU N N. Extraction of octave spectra information for spoofing attack detection[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(12): 2373-2384.
[6] 徐童心, 黄俊. 基于CNN-Transformer的欺骗语音检测[J]. 无线电工程, 2024, 54(5): 1091-1098.
XU T X, HUANG J. Spoofed speech detection based on CNN-transformer[J]. Radio Engineering, 2024, 54(5): 1091-1098.
[7] SCARDAPANE S, STOFFL L, R?HRBEIN F, et al. On the use of deep recurrent neural networks for detecting audio spoofing attacks[C]//Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway: IEEE, 2017: 3483-3490.
[8] 何信, 胡金瑶, 艾斯卡尔·艾木都拉, 等. 基于ResNeSt网络的音频欺骗检测[J]. 现代电子技术, 2022, 45(23): 88-92.
HE X, HU J Y, ASKAR HAMDULLA, et al. Audio spoofing detection based on ResNeSt network[J]. Modern Electronics Technique, 2022, 45(23): 88-92.
[9] LAI C I, CHEN N, VILLALBA J, et al. ASSERT: anti-spoofing with squeeze-excitation and residual networks[C]//Proceedings of the Interspeech 2019, 2019: 1013-1017.
[10] WANG Z, CUI S, KANG X, et al. Densely connected convolutional network for audio spoofing detection[C]//Proceedings of the 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2020: 1352-1360.
[11] MUCKENHIRN H, MAGIMAI-DOSS M, MARCEL S, et al. End-to-end convolutional neural network-based voice presentation attack detection[C]//Proceedings of the 2017 IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2017: 335-341.
[12] MONTEIRO J, ALAM J, FALK T H, et al. End-to-end detection of attacks to automatic speaker recognizers with time-attentive light convolutional neural networks[C]//Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE, 2019: 1-6.
[13] HUA G, TEOH A B J, ZHANG H J. Towards end-to-end synthetic speech detection[J]. IEEE Signal Processing Letters, 2021, 28: 1265-1269.
[14] 王锦阳, 华光, 黄双. 基于注意力机制的端到端合成语音检测[J]. 信号处理, 2022, 38(9): 1975-1987.
WANG J Y, HUA G, HUANG S. End-to-end synthetic speech detection based on attention mechanism[J]. Journal of Signal Processing, 2022, 38(9): 1975-1987.
[15] 李子愚, 刘兆霆, 姚英彪. 乘性噪声环境和非理想二值信道下的1比特鲁棒参数估计[J]. 传感技术学报, 2019, 32(11): 1730-1737.
LI Z Y, LIU Z T, YAO Y B. One-bit robust parameter estimation in multiplicative noise environment and non-ideal binary channel[J]. Chinese Journal of Sensors and Actuators, 2019, 32(11): 1730-1737.
[16] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. [2024-04-11]. https://arxiv.org/abs/1709. 01507.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[EB/OL]. [2024-04-13]. https://arxiv.org/abs/1807.06521.
[18] ROY A G, NAVAB N, WACHINGER C, et al. Concurrent spatial and channel squeeze & qexcitation in fully convolutional networks[EB/OL]. [2024-04-08]. https://arxiv.org/abs/ 1803.02579.
[19] TODISCO M, WANG X, VESTMAN V, et al. ASVspoof 2019: future horizons in spoofed and fake audio detection[C]//Proceedings of the Interspeech 2019, 2019: 1008-1012.
[20] KINNUNEN T, LEE K A, DELGADO H, et al. T-DCF: a detection cost function for the tandem assessment of spoofing countermeasures and automatic speaker verification[EB/OL]. [2024-03-18]. https://arxiv.org/abs/1804.09618.
[21] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. [2024-03-18]. https://arxiv.org/abs/1710.09412.
[22] TAK H, PATINO J, TODISCO M, et al. End-to-end anti-spoofing with RawNet2[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 6369-6373.
[23] LI X, LI N, WENG C, et al. Replay and synthetic speech detection with Res2Net architecture[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 6354-6358.
[24] GE W Y, PATINO J, TODISCO M, et al. Raw differentiable architecture search for speech deepfake and spoofing detection[C]//Proceedings of the 2021 Edition of the Automatic Speaker Verification and Spoofing Countermeasures Challenge, 2021: 22-28.
[25] GUO D F, ZHU W H, GAO Z M, et al. A study of wavelet thresholding denoising[C]//Proceedings of the 2000 5th International Conference on Signal Processing. the 16th World Computer Congress 2000: vol.1. Piscataway: IEEE, 2000: 329-332.
[26] 火元莲, 张健, 连培君, 等. 基于改进小波阈值函数的闪电电场信号去噪研究[J]. 传感技术学报, 2021, 34(2): 218-222.
HUO Y L, ZHANG J, LIAN P J, et al. Research on lightning electric field signals denoising based on improved wavelet threshold function[J]. Chinese Journal of Sensors and Actuators, 2021, 34(2): 218-222.
[27] 夏翔, 方磊, 方四安, 等. 基于自监督预训练和有监督微调的伪造语音检测方法[J]. 计算机应用, 2023, 43(S1): 263-268.
XIA X, FANG L, FANG S A, et al. Spoofing speech detection method based on self-supervised pre-training and supervised fine-tuning[J]. Journal of Computer Applications, 2023, 43(S1): 263-268. |