[1] GODDARD J P, REYMOND J L. Enzyme assays for high-throughput screening[J]. Current Opinion in Biotechnology, 2004, 15(4): 314-322.
[2] CONSORTIUM U. UniProt: the universal protein knowledgebase in 2023[J]. Nucleic Acids Research, 2023, 51: 523-531.
[3] FURNHAM N, GARAVELLI J S, APWEILER R, et al. Missing in action: enzyme functional annotations in biological databases[J]. Nature Chemical Biology, 2009, 5: 521-525.
[4] JEFFERY C J. Protein moonlighting: what is it, and why is it important?[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2018, 373(1738): 20160523.
[5] CORNISH-BOWDEN A. Current IUBMB recommendations on enzyme nomenclature and kinetics[J]. Perspectives in Science, 2014, 1: 74-87.
[6] HUNG J H, WENG Z P. Sequence alignment and homology search with BLAST and ClustalW[J]. Cold Spring Harbor Protocols, 2016(11).
[7] KUMAR C, CHOUDHARY A. A top-down approach to classify enzyme functional classes and sub-classes using random forest[J]. EURASIP Journal on Bioinformatics & Systems Biology, 2012(1).
[8] 郑征帆, 吕艳杰, 宁黔冀. 甲壳动物表皮几丁质结合蛋白结构与功能研究进展[J]. 水产科学, 2017, 36(4): 538-542.
ZHENG Z F, LYU Y J, NING Q J. Research progress on structure and function of crustacean cuticular chitin-binding proteins: a review[J]. Fisheries Science, 2017, 36(4): 538-542.
[9] ARAKAKI A K, HUANG Y, SKOLNICK J. EFICAz2: enzyme function inference by a combined approach enhanced by machine learning[J]. BMC Bioinformatics, 2009, 10: 107.
[10] DALKIRAN A, RIFAIOGLU A S, MARTIN M J, et al. ECPred: a tool for the prediction of the enzymatic functions of protein sequences based on the EC nomenclature[J]. BMC Bioinformatics, 2018, 19(1): 334.
[11] LI H Y, TIAN S Y, LI Y, et al. Modern deep learning in bioinformatics[J]. Journal of Molecular Cell Biology, 2020, 12(11): 823-827.
[12] LI H, DENG Z H, YANG H T, et al. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier[J]. Briefings in Bioinformatics, 2022, 23(1): bbab394.
[13] RYU J Y, KIM H U, LEE S Y. Deep learning enables high-quality and high-throughput prediction of enzyme commission numbers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(28): 13996-14001.
[14] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[15] NALLAPAREDDY M V, DWIVEDULA R. ABLE: attention based learning for enzyme classification[J]. Computational Biology and Chemistry, 2021, 94: 107558.
[16] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [EB/OL]. [2024-05-16]. https://arxiv.org/abs/1301.3781v1.
[17] YANG H T, DENG Z H, PAN X Y, et al. RNA-binding protein recognition based on multi-view deep feature and multi-label learning[J]. Briefings in Bioinformatics, 2021, 22(3): bbaa174.
[18] WU Q Z, DENG Z H, PAN X Y, et al. MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction[J]. Briefings in Bioinformatics, 2022, 23(5): bbac289.
[19] TANG W L, DENG Z H, ZHOU H W, et al. MVDINET: a novel multi-level enzyme function predictor with multi-view deep interactive learning[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2024, 21(1): 84-94.
[20] SCH?FFER A A, ARAVIND L, MADDEN T L, et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements[J]. Nucleic Acids Research, 2001, 29(14): 2994-3005.
[21] YANG K K, WU Z, BEDBROOK C N, et al. Learned protein embeddings for machine learning[J]. Bioinformatics, 2018, 34(23): 4138.
[22] WEISSENOW K, HEINZINGER M, ROST B. Protein language-model embeddings for fast, accurate, and alignment-free protein structure prediction[J]. Structure, 2022, 30(8): 1169-1177.
[23] LIN Z M, AKIN H, RAO R, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model[J]. Science, 2023, 379(6637): 1123-1130.
[24] ANDREW G, ARORA R, BILMES J, et al. Deep canonical correlation analysis[C]//Proceedings of the 30th International Conference on Machine Learning, 2013: 1247-1255.
[25] DHILLON P, FOSTER D P, UNGAR L. Multi-view learning of word embeddings via CCA[C]//Advances in Neural Information Processing Systems 24, 2011: 199-207.
[26] LE-KHAC P H, HEALY G, SMEATON A F. Contrastive representation learning: a framework and review[J]. IEEE Access, 2020, 8: 193907-193934.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[28] HUANG Y, NIU B, GAO Y, et al. CD-HIT Suite: a web server for clustering and comparing biological sequences[J]. Bioinformatics, 2010, 26(5): 680-682.
[29] CAVOJSKY M, DROZDA M, BALOGH Z. Analysis and experimental evaluation of the Needleman-Wunsch algorithm for trajectory comparison[J]. Expert Systems with Applications, 2021, 165: 114068.
[30] BRANDES N, OFER D, PELEG Y, et al. ProteinBERT: a universal deep-learning model of protein sequence and function[J]. Bioinformatics, 2022, 38(8): 2102-2110.
[31] LI Y, WANG S, UMAROV R, et al. DEEPre: sequence-based enzyme EC number prediction by deep learning[J]. Bioinformatics, 2018, 34(5): 760-769.
[32] KRISHNA K, NARASIMHA MURTY M. Genetic K-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1999, 29(3): 433-439.
[33] MURTAGH F, CONTRERAS P. Algorithms for hierarchical clustering: an overview[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012, 2(1): 86-97.
[34] GREENACRE M, GROENEN P J F, HASTIE T, et al. Principal component analysis[J]. Nature Reviews Methods Primers, 2022, 2: 100.
[35] SHALEM O, SANJANA N E, ZHANG F. High-throughput functional genomics using CRISPR-Cas9[J]. Nature Reviews Genetics, 2015, 16(5): 299-311.
[36] WANG Y J, XUE P, CAO M F, et al. Directed evolution: methodologies and applications[J]. Chemical Reviews, 2021, 121(20): 12384-12444.
[37] KIM G B, KIM W J, KIM H U, et al. Machine learning applications in systems metabolic engineering[J]. Current Opinion in Biotechnology, 2020, 64: 1-9.
[38] YU T H, BOOB A G, VOLK M J, et al. Machine learning-enabled retrobiosynthesis of molecules[J]. Nature Catalysis, 2023, 6: 137-151. |