计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (4): 945-963.DOI: 10.3778/j.issn.1673-9418.2405072

• 理论·算法 • 上一篇    下一篇

融合正切搜索与竞争交配的斑马优化算法及应用

苏晨,王防修,黄淄博   

  1. 武汉轻工大学 数学与计算机学院,武汉 430023
  • 出版日期:2025-04-01 发布日期:2025-03-28

Integration of Tangent Search and Competitive Mating in Zebra Optimization Algorithm and Its Application

SU Chen, WANG Fangxiu, HUANG Zibo   

  1. School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
  • Online:2025-04-01 Published:2025-03-28

摘要: 针对斑马优化算法(ZOA)在求解最优解时存在早熟收敛和容易陷入局部最优的缺陷,提出了一种融合正切搜索与竞争交配的斑马优化算法(TZOA)。对该算法使用了正切搜索策略,增加种群多样性防止陷入局部最优解,并使用双曲余弦因子作为调节参数,避免影响收敛速度。将野马优化算法(WHO)的放牧行为与斑马优化算法的觅食行为共同组成双种群共生策略,提高算法前期的全局探索能力与后期的局部收敛能力。加入一种全新的竞争交配机制进一步提高种群多样性与局部探索范围。实验部分则通过与改进策略、近几年优秀算法、其他作者改进ZOA算法分别在14个CEC2017测试函数的10、30、50维上进行测试,并使用种群多样性分析、Wilcoxon秩和检验、探索开发分析和运行时间对比图来验证算法的性能。实验结果表明,TZOA相较于其他几种智能优化算法具有更好的求解能力与精度。同时将TZOA应用于机器人路径规划问题,在简单地图与复杂地图测试所得结果中皆为最佳值,进一步证明了改进算法TZOA的有效性。

关键词: 斑马优化算法, 正切搜索, 双曲余弦函数, 野马优化算法, 双种群共生, 竞争交配, 机器人路径规划

Abstract: Aiming at the premature convergence and local optima entrapment issues in the zebra optimization algorithm (ZOA), a tangent search-competitive mating zebra optimization algorithm (TZOA) is proposed. Firstly, the algorithm uses a tangent search strategy to increase the diversity of population to prevent the local optimal solution, and uses the hyperbolic cosine factor as a regulatory parameter to avoid affecting the convergence speed. Secondly, the grazing behavior of the wild horse optimizer algorithm (WHO) and the foraging behavior of the zebra optimization algorithm form a double group symbiotic strategy to improve the global exploration and local convergence capabilities of the early stage of the algorithm. Then, this paper adds a new competitive mating mechanism to further improve the diversity and local exploration scope of population. Finally, the experiment is conducted on the 10, 30 and 50 dimensions of 14 CEC2017 test functions with improving strategies, excellent algorithms in recent years, and improved ZOA algorithms proposed by other authors. The population diversity analysis, Wilcoxon rank sum test, exploration and exploitation analysis, and runtime comparison graphs are used to verify the performance of the algorithm. The experimental results demonstrate that the proposed TZOA exhibits superior optimization performance and higher solution accuracy compared with several other intelligent optimization algorithms. TZOA is simultaneously applied to robot path planning problems, and the results obtained from both simple and complex map tests are the best, further proving the effectiveness of the improved algorithm TZOA.

Key words: zebra optimization algorithm, tangent search, hyperbolic cosine function, wild horse optimizer algorithm, symbiosis of two populations, competitive mating, robot path planning