计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (1): 103-110.DOI: 10.3778/j.issn.1673-9418.1307017
张燕平1,2,查永亮1,2,赵 姝1,2,杜秀全1,2+
ZHANG Yanping1,2, ZHA Yongliang1,2, ZHAO Shu1,2, DU Xiuquan1,2+
摘要: 传统的预测方法在构造特征向量时只考虑了氨基酸的组成,而自相关系数不仅能够很好地反映序列中氨基酸的位置信息,而且考虑了序列内部不同位置的氨基酸间的相互影响。设计了一种将氨基酸组成和自相关系数相结合的方法来构造特征向量;在Chou提出的伪氨基酸组成模型(pseudo-amino acid composition,PseAAC)的基础上,通过扩展信息重新构造了伪氨基酸组成模型,并将其与自相关系数组合在一起来构造特征向量。分别使用两种方法编码,选用支持向量机作为预测工具,在数据集Z277、Z498以及独立测试集D138上进行了若干实验,对比结果显示,新方法比传统的氨基酸组成方法的准确率分别平均提高了7.43%和8.53%,证明了新方法是有效的。