计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (2): 207-217.DOI: 10.3778/j.issn.1673-9418.1305011
姚宏亮+,罗明伟,李俊照,王 浩,李国欢
YAO Hongliang+, LUO Mingwei, LI Junzhao, WANG Hao, LI Guohuan
摘要: 当前社团分析方法没有充分利用复杂系统的内在特性,难以准确和有效地发现复杂加权网络群体之间的相关性。基于股票网络的活跃性,提出了一种基于活跃性的复合加权股票网络的层次社团划分算法。该算法对股票活跃性进行了定义,提出了一种复合加权模型以有效表示股票网络的活跃性,进而为了实现复合加权网络的社团划分,给出了群体相异度的评判标准。该算法以股票价格波动的相关性为边建立复合加权股票网络,以股票的换手率和成交量为评价标准,选出活跃性高的股票,进而以活跃性股票为中心,基于股票间的相异度权重标价准则,提取多个高活跃的局部结构,可以有效避免层次划分算法由于初始社团结构质量不高,导致社区结构不能沿正确方向继续进行层次发现的问题。最后,基于高活跃的局部结构性,利用全局优化模块度的方法对复合加权网络进行社团划分。将CNM算法(Newman贪婪算法)与BGLL算法运用于构建的网络中,结果表明了算法的优越性。