计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (4): 456-466.DOI: 10.3778/j.issn.1673-9418.1307020
姚宏亮+,吴立辉,王 浩,李俊照
YAO Hongliang+ , WU Lihui, WANG Hao, LI Junzhao
摘要: 结构分析的隐变量发现方法难以有效地发现隐变量且可解释性较差。基于因果关系和局部结构的不确定性,提出了一种基于局部因果关系分析的隐变量发现算法(hidden variable discovering algorithm based on local causality analysis,LCAHD)。LCAHD算法给出了因果结构熵的定义,将因果知识和不确定性知识相融合,以因果关系的不确定性程度作为隐变量存在的判定依据,并对这一依据进行了理论上的论证。LCAHD算法首先通过寻找目标变量的马尔科夫毯来提取局部依赖结构,并基于扰动学习获得扰动数据,联合扰动数据和观测数据学习局部依赖结构中的因果关系;然后利用因果结构熵对局部因果结构中因果关系的不确定性进行度量,并利用隐变量和因果关系不确定性之间的相关性判定条件,确定隐变量的存在性。分别针对标准网络和股票网络进行了实验,结果表明,该算法能准确地确定隐变量的位置,具有较好的解释性。