计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (7): 877-885.DOI: 10.3778/j.issn.1673-9418.1403054
丁春涛1,2,张 莉1,2+,王邦军1,2
DING Chuntao1,2, ZHANG Li1,2+, WANG Bangjun1,2
摘要: 判别近邻嵌入算法(discriminant neighborhood embedding,DNE)通过构造邻接图,使得在投影子空间中能够保持原始数据的局部结构,能有效地发现最佳判别方向。但是它有两方面的不足:一方面不能标识样本点的近邻样本点位置信息,从而不能更好地保持邻域结构;另一方面当数据不均衡时,不能实现子空间中类内聚合或者类间分离的目的,这不利于分类。为此提出了一种新的有监督子空间学习算法——局部平衡的判别近邻嵌入算法(locality-balanced DNE,LBDNE)。在构建邻接图时,局部平衡的判别近邻嵌入算法分别建立同类邻接图和异类邻接图,并通过引入一个控制参数,有效地平衡了类内与类间的关系。该算法与其他经典算法相比,在人脸识别问题上具有较高的识别率,充分说明了局部平衡的判别近邻嵌入算法能够有效地处理识别问题。