计算机科学与探索 ›› 2015, Vol. 9 ›› Issue (2): 234-241.DOI: 10.3778/j.issn.1673-9418.1409012

• 人工智能与模式识别 • 上一篇    下一篇

基于k中心点聚类的图像二值化方法

唐  涛+,覃  晓,易宗剑,韩冬越   

  1. 广西师范学院 计算机与信息工程学院,南宁 530023
  • 发布日期:2015-02-03

Image Binarization Processing Method Using k-Medoids Clustering

TANG Tao+, QIN Xiao, YI Zongjian, HAN Dongyue   

  1. College of Computer and Information Engineering, Guangxi Teachers Education University, Nanning 530023, China
  • Published:2015-02-03

摘要: 在机器视觉和模式识别的研究中,将图像变换为二值图像是能够更高效识别图像中的特定区域或者目标的关键。提出了一种基于k中心点聚类算法的图像二值化方法(image binarization k-medoids-based clustering,IBkMC)。该方法使用基于距离的平方和误差作为聚类质量度量,根据图像二值化的领域知识将k的值取为2,自然地将图像分为前景类和背景类两类。实验结果证明,针对复杂环境下的自然图像,该方法在效果和效率上优于OSTU(最大类间方差)阈值化方法。

关键词: 图像二值化, k中心点聚类, 阈值

Abstract: In the research on machine vision and pattern recognition, transforming the image into two-value image is the key foundation to more efficiently recognize specific area or target of image. This paper presents an image binarization processing method using k-medoids clustering. This method uses square sum error based on distance as the clustering quality metric function. According to the field knowledge of image binarization, this method sets the value of k as 2, divides the image into foreground class and background class. The experimental results show that, for natural images under complex environment, this method is better than OSTU thresholding method in the effectiveness and efficiency.

Key words: image binarization, k-medoids clustering, threshold