Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2193-2218.DOI: 10.3778/j.issn.1673-9418.2204101
• Surveys and Frontiers • Previous Articles Next Articles
LUO Haiyin1,2,+(), ZHENG Yuhui1,2
Received:
2022-04-06
Revised:
2022-06-09
Online:
2022-10-01
Published:
2022-10-14
About author:
ZHENG Yuhui, born in 1982, Ph.D., professor, member of CCF. His research interests include computer vision, pattern recognition, etc.Supported by:
通讯作者:
+ E-mail: 20201220026@nuist.edu.cn作者简介:
郑钰辉(1982—),男,山西芮城人,博士,教授,CCF会员,主要研究方向为计算机视觉、模式识别等。基金资助:
CLC Number:
LUO Haiyin, ZHENG Yuhui. Survey of Research on Image Inpainting Methods[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2193-2218.
罗海银, 郑钰辉. 图像修复方法研究综述[J]. 计算机科学与探索, 2022, 16(10): 2193-2218.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2204101
方法 | 使用思想 | 优势 | 局限 |
---|---|---|---|
BSCB[ | 等光线方向 | 自动修复 应用区域广 | 大区域纹理修复 |
VFGL[ | 梯度方向 灰度级 | 纹理修复 | 灰度图像修复 |
TV[ | 各向异性扩散 | 边界修复 | 直线修复 |
CDD[ | 曲率驱动扩散 | 断裂修复 | 水平线插值 |
Mumford-Shah-Euler[ | 曲率 Euler相同阶数 | 大区域修复 | 计算时间长 |
Euler’s Elastica[ | Euler弹性模型 | 曲线修复 | 计算时间长 |
改进TV[ | 破损区域边缘参考点权值设置 | 边缘信息过渡自然 | 大区域纹理修复 |
改进CDD[ | 引入梯度和等照度线的曲率 | 时间短 断裂水平线连接光滑 | 纹理模糊 |
改进BSCB[ | 快速信息扩散 | 线性扩散 模型速度快 | 灰度图像修复 |
改进TV[ | 边界引导扩散函数 | 边缘过渡自然 大区域修复 | 图像模糊 计算时间长 |
Table 1 Characteristics of image inpainting methods based on partial differential equation
方法 | 使用思想 | 优势 | 局限 |
---|---|---|---|
BSCB[ | 等光线方向 | 自动修复 应用区域广 | 大区域纹理修复 |
VFGL[ | 梯度方向 灰度级 | 纹理修复 | 灰度图像修复 |
TV[ | 各向异性扩散 | 边界修复 | 直线修复 |
CDD[ | 曲率驱动扩散 | 断裂修复 | 水平线插值 |
Mumford-Shah-Euler[ | 曲率 Euler相同阶数 | 大区域修复 | 计算时间长 |
Euler’s Elastica[ | Euler弹性模型 | 曲线修复 | 计算时间长 |
改进TV[ | 破损区域边缘参考点权值设置 | 边缘信息过渡自然 | 大区域纹理修复 |
改进CDD[ | 引入梯度和等照度线的曲率 | 时间短 断裂水平线连接光滑 | 纹理模糊 |
改进BSCB[ | 快速信息扩散 | 线性扩散 模型速度快 | 灰度图像修复 |
改进TV[ | 边界引导扩散函数 | 边缘过渡自然 大区域修复 | 图像模糊 计算时间长 |
方法 | 使用思想 | 优势 | 局限 |
---|---|---|---|
Texture Synthesis[ | 马尔科夫随机场模型 | 保留局部图像结构 | 部分纹理错误 算法时间过长 |
WL[ | 多分辨率金字塔结构 | 运行速度快 算法通用 | 无法捕捉深度、反射等线索 |
SNT[ | 视觉掩码隐藏样本边界 | 不规则修复 合成纹理自然 | 规则结构或规则特征修复 |
Fragment-Based[ | 已知图像上下文内容指导修复 | 自适应片段区域组合修复 | 边界区域修复模糊 速度慢 |
GlobalImageStatistics[ | 基于图像局部特定分布修复 | 全局图像修复 计算时间短 | 细节模糊 仅用于结构图像 |
Criminisi算法[ | 复制结构和纹理信息 | 修复图像结构和纹理 | 计算相似度函数不稳定 |
改进Criminisi算法[ | 引入曲率及梯度信息 | 克服高纹理区域过渡填充 | 图像细节不清晰 |
改进Criminisi算法[ | 引入相邻像素间颜色插值信息 | 边界部分过渡自然 | 搜索策略不稳定 |
改进Criminisi算法[ | 基于马尔科夫随机场匹配准则 | 解决图像误匹配现象 | 速度慢 不适用复杂图像修复 |
PatchMatch[ | 近似最近邻匹配 | 图像纹理修复连贯 | 收敛性差 计算时间长 |
SceneCompletion[ | 数据库查找相似图像 | 数据驱动 使用大部分场景 | 不适用没有相似内容修复 |
Table 2 Characteristics of image inpainting methods based on patch
方法 | 使用思想 | 优势 | 局限 |
---|---|---|---|
Texture Synthesis[ | 马尔科夫随机场模型 | 保留局部图像结构 | 部分纹理错误 算法时间过长 |
WL[ | 多分辨率金字塔结构 | 运行速度快 算法通用 | 无法捕捉深度、反射等线索 |
SNT[ | 视觉掩码隐藏样本边界 | 不规则修复 合成纹理自然 | 规则结构或规则特征修复 |
Fragment-Based[ | 已知图像上下文内容指导修复 | 自适应片段区域组合修复 | 边界区域修复模糊 速度慢 |
GlobalImageStatistics[ | 基于图像局部特定分布修复 | 全局图像修复 计算时间短 | 细节模糊 仅用于结构图像 |
Criminisi算法[ | 复制结构和纹理信息 | 修复图像结构和纹理 | 计算相似度函数不稳定 |
改进Criminisi算法[ | 引入曲率及梯度信息 | 克服高纹理区域过渡填充 | 图像细节不清晰 |
改进Criminisi算法[ | 引入相邻像素间颜色插值信息 | 边界部分过渡自然 | 搜索策略不稳定 |
改进Criminisi算法[ | 基于马尔科夫随机场匹配准则 | 解决图像误匹配现象 | 速度慢 不适用复杂图像修复 |
PatchMatch[ | 近似最近邻匹配 | 图像纹理修复连贯 | 收敛性差 计算时间长 |
SceneCompletion[ | 数据库查找相似图像 | 数据驱动 使用大部分场景 | 不适用没有相似内容修复 |
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
CE[ | 128×128 | L1 L2 对抗 | 端到端的语义修复 | CE结合GAN思想 | 边缘模糊 |
GLCIC[ | 256×256 | 加权L2 对抗 | 端到端的语义修复 | 全局和局部GAN | 纹理模糊 |
E-CE[ | 128×128 | L1 WGAN | 两阶段的边缘指导修复 | 边缘感知CE | 纹理模糊 |
SI[ | 128×128 | 结构重建 对抗 | 端到端的结构修复 | 结构重建损失 | 颜色差异 |
LISK[ | 256×256 | 感知 风格 | 端到端的结构指导修复 | 多任务学习结构嵌入 | 边缘断裂 |
MST-Net[ | 256×256 | 对抗 L1 感知 风格 | 两阶段的草图指导修复 | 草图张量空间 | 结构扭曲 |
GMCNN[ | 512×512 | ID-MRF变量重建 对抗 | 端到端的结构纹理修复 | 多列结构 | 复杂图像修复 |
MED[ | 256×256 | 重建 感知 风格 对抗 | 端到端的结构纹理修复 | 共享编解码器 特征均衡 | 上下文信息混合 |
MSDN[ | 256×256 | 对抗重建特征匹配 | 端到端的纹理修复 | 多级解码器 | 结构扭曲 |
PEPSI[ | 256×256 | 对抗 Hinge L1 | 端到端的语义修复 | 共享编码器 并行解码器 | 边界明显 |
Diet-PEPSI[ | 256×256 | L1 对抗 | 端到端的语义修复 | 速率自适应卷积层 | 颜色差异 |
DII[ | 256×256 | 蒸馏 注意力转移 | 端到端的结构修复 | 知识蒸馏 特征融合 | 模糊伪影 |
RN[ | 256×256 | L1 对抗 感知 风格 | 端到端的语义修复 | 区域特征归一化 | 复杂场景修复 |
MADF[ | 256×256 | 重建 感知 风格 TV | 端到端的结构修复 | 掩码感知动态过滤模块 | 大区域修复 |
DE[ | 224×224 | L2 对抗 | 端到端的纹理修复 | 双编码器 跳跃连接 | 颜色差异 |
T-MAD[ | 256×256 | 样本分布 L1感知 TV | 两阶段的样本指导修复 | 纹理内存引导、检索 | 边界模糊 |
MRF-Net[ | 256×256 | 重建 对抗 | 端到端的纹理修复 | 并行多分辨率融合网络 | 背景混乱修复 |
MAP[ | 256×256 | 对抗 特征匹配 重建 | 端到端的纹理修复 | 多级注意力传播编码器 | 纹理模糊 |
Wave Fill[ | 256×256 | L1 对抗 特征匹配 感知 | 端到端的样本修复 | 小波变换 多频带修复 | 多频特征混乱 |
CII[ | 512×512 | 感知 重建 对抗 | 两阶段的纹理样本修复 | 推理、翻译阶段 | 边界明显 |
EILMB[ | 512×512 | 掩码重建 着色 | 两阶段的结构颜色修复 | 外部-内部学习 单色瓶颈 | 计算时间长 |
Table 3 Characteristics of Encoder-Decoder image inpainting methods
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
CE[ | 128×128 | L1 L2 对抗 | 端到端的语义修复 | CE结合GAN思想 | 边缘模糊 |
GLCIC[ | 256×256 | 加权L2 对抗 | 端到端的语义修复 | 全局和局部GAN | 纹理模糊 |
E-CE[ | 128×128 | L1 WGAN | 两阶段的边缘指导修复 | 边缘感知CE | 纹理模糊 |
SI[ | 128×128 | 结构重建 对抗 | 端到端的结构修复 | 结构重建损失 | 颜色差异 |
LISK[ | 256×256 | 感知 风格 | 端到端的结构指导修复 | 多任务学习结构嵌入 | 边缘断裂 |
MST-Net[ | 256×256 | 对抗 L1 感知 风格 | 两阶段的草图指导修复 | 草图张量空间 | 结构扭曲 |
GMCNN[ | 512×512 | ID-MRF变量重建 对抗 | 端到端的结构纹理修复 | 多列结构 | 复杂图像修复 |
MED[ | 256×256 | 重建 感知 风格 对抗 | 端到端的结构纹理修复 | 共享编解码器 特征均衡 | 上下文信息混合 |
MSDN[ | 256×256 | 对抗重建特征匹配 | 端到端的纹理修复 | 多级解码器 | 结构扭曲 |
PEPSI[ | 256×256 | 对抗 Hinge L1 | 端到端的语义修复 | 共享编码器 并行解码器 | 边界明显 |
Diet-PEPSI[ | 256×256 | L1 对抗 | 端到端的语义修复 | 速率自适应卷积层 | 颜色差异 |
DII[ | 256×256 | 蒸馏 注意力转移 | 端到端的结构修复 | 知识蒸馏 特征融合 | 模糊伪影 |
RN[ | 256×256 | L1 对抗 感知 风格 | 端到端的语义修复 | 区域特征归一化 | 复杂场景修复 |
MADF[ | 256×256 | 重建 感知 风格 TV | 端到端的结构修复 | 掩码感知动态过滤模块 | 大区域修复 |
DE[ | 224×224 | L2 对抗 | 端到端的纹理修复 | 双编码器 跳跃连接 | 颜色差异 |
T-MAD[ | 256×256 | 样本分布 L1感知 TV | 两阶段的样本指导修复 | 纹理内存引导、检索 | 边界模糊 |
MRF-Net[ | 256×256 | 重建 对抗 | 端到端的纹理修复 | 并行多分辨率融合网络 | 背景混乱修复 |
MAP[ | 256×256 | 对抗 特征匹配 重建 | 端到端的纹理修复 | 多级注意力传播编码器 | 纹理模糊 |
Wave Fill[ | 256×256 | L1 对抗 特征匹配 感知 | 端到端的样本修复 | 小波变换 多频带修复 | 多频特征混乱 |
CII[ | 512×512 | 感知 重建 对抗 | 两阶段的纹理样本修复 | 推理、翻译阶段 | 边界明显 |
EILMB[ | 512×512 | 掩码重建 着色 | 两阶段的结构颜色修复 | 外部-内部学习 单色瓶颈 | 计算时间长 |
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
Shift-Net[ | 256×256 | 指导 L1 对抗 | 端到端的图像修复 | 移位连接层 | 边界信息混合 |
FRRN[ | 256×256 | 逐步 重建 对抗 风格 | 端到端的纹理修复 | 全分辨率残差网络 | 计算成本高 |
Pconv[ | 512×512 | 像素 感知 风格 TV | 端到端的掩码更新修复 | 自动掩码更新部分卷积 | 更新不稳定 |
DFNet[ | 512×512 | 上下文真实感梯度差异 | 端到端的纹理修复 | 自适应融合模块 | 语义混乱 |
PEN-Net[ | 256×256 | 对抗 金字塔 L1 | 端到端的语义修复 | 金字塔注意力转移网络 | 纹理伪影 |
MSA-Net[ | 256×256 | L2 感知 风格 | 端到端的语义修复 | 多尺度注意力单元 | 样本模糊 |
DPNet[ | 256×256 | 重建 感知 ID-MRF 对抗 | 端到端的样本修复 | 双金字塔 动态归一化 | 分辨率较低 |
CSA[ | 256×256 | 一致 L1 对抗 | 两阶段的语义修复 | 连贯语义注意层 | 边界伪影 |
LGNet[ | 256×256 | 重建 对抗 感知 风格 TV | 两阶段的全局局部修复 | 全局-局部细化网络 | 语义不一致 |
LBAM[ | 256×256 | 像素重建 感知 对抗 | 端到端的结构修复 | 可学习注意力图 | 颜色差异 |
VCNet[ | 256×256 | 自适应 IDMRF 对抗 | 两阶段的掩码指导修复 | 视觉一致性网络 | 语义不一致 |
DSNet[ | 256×256 | 感知 风格 TV孔洞 有效 | 端到端的掩码修复 | 动态选择机制 | 结构扭曲 |
PRVS[ | 256×256 | 对抗 金字塔 L1 | 两阶段的结构指导修复 | 视觉结构重建层 | 纹理模糊 |
SGE-Net[ | 256×256 | 重建 对抗 交叉熵 | 两阶段的语义指导修复 | 语义引导 评估机制 | 纹理伪影 |
CTSDG[ | 256×256 | 监督 对抗 感知 风格 | 两阶段的纹理结构修复 | 纹理约束 结构引导 | 分辨率较低 |
MUSICAL[ | 256×256 | 风格 感知 对抗 TV L1 | 端到端的纹理修复 | 金字塔注意力模块 | 边界明显 |
SWAP[ | 256×256 | 相关 重建 对抗 交叉熵 | 端到端的语义纹理修复 | 语义注意传播模块 | 边界不一致 |
RFR-Net[ | 256×256 | 感知 风格 | 端到端的特征修复 | 循环特征推理模块 | 纹理重影 |
HiFill[ | 1 024×1 024 | 重建 对抗 | 两阶段的纹理修复 | 上下文加权聚合残差 | 大区域修复 |
Table 4 Characteristics of U-Net image inpainting methods
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
Shift-Net[ | 256×256 | 指导 L1 对抗 | 端到端的图像修复 | 移位连接层 | 边界信息混合 |
FRRN[ | 256×256 | 逐步 重建 对抗 风格 | 端到端的纹理修复 | 全分辨率残差网络 | 计算成本高 |
Pconv[ | 512×512 | 像素 感知 风格 TV | 端到端的掩码更新修复 | 自动掩码更新部分卷积 | 更新不稳定 |
DFNet[ | 512×512 | 上下文真实感梯度差异 | 端到端的纹理修复 | 自适应融合模块 | 语义混乱 |
PEN-Net[ | 256×256 | 对抗 金字塔 L1 | 端到端的语义修复 | 金字塔注意力转移网络 | 纹理伪影 |
MSA-Net[ | 256×256 | L2 感知 风格 | 端到端的语义修复 | 多尺度注意力单元 | 样本模糊 |
DPNet[ | 256×256 | 重建 感知 ID-MRF 对抗 | 端到端的样本修复 | 双金字塔 动态归一化 | 分辨率较低 |
CSA[ | 256×256 | 一致 L1 对抗 | 两阶段的语义修复 | 连贯语义注意层 | 边界伪影 |
LGNet[ | 256×256 | 重建 对抗 感知 风格 TV | 两阶段的全局局部修复 | 全局-局部细化网络 | 语义不一致 |
LBAM[ | 256×256 | 像素重建 感知 对抗 | 端到端的结构修复 | 可学习注意力图 | 颜色差异 |
VCNet[ | 256×256 | 自适应 IDMRF 对抗 | 两阶段的掩码指导修复 | 视觉一致性网络 | 语义不一致 |
DSNet[ | 256×256 | 感知 风格 TV孔洞 有效 | 端到端的掩码修复 | 动态选择机制 | 结构扭曲 |
PRVS[ | 256×256 | 对抗 金字塔 L1 | 两阶段的结构指导修复 | 视觉结构重建层 | 纹理模糊 |
SGE-Net[ | 256×256 | 重建 对抗 交叉熵 | 两阶段的语义指导修复 | 语义引导 评估机制 | 纹理伪影 |
CTSDG[ | 256×256 | 监督 对抗 感知 风格 | 两阶段的纹理结构修复 | 纹理约束 结构引导 | 分辨率较低 |
MUSICAL[ | 256×256 | 风格 感知 对抗 TV L1 | 端到端的纹理修复 | 金字塔注意力模块 | 边界明显 |
SWAP[ | 256×256 | 相关 重建 对抗 交叉熵 | 端到端的语义纹理修复 | 语义注意传播模块 | 边界不一致 |
RFR-Net[ | 256×256 | 感知 风格 | 端到端的特征修复 | 循环特征推理模块 | 纹理重影 |
HiFill[ | 1 024×1 024 | 重建 对抗 | 两阶段的纹理修复 | 上下文加权聚合残差 | 大区域修复 |
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
DGM[ | 64×64 | 指导 L1 对抗 | 端到端的语义修复 | 先验知识 上下文损失 | 模型不稳定 |
GFC[ | 128×128 | L2 对抗 像素Softmax | 端到端的语义修复 | 语义解析网络 | 纹理模糊 |
NEO[ | 256×256 | L2 对抗 L1 | 两阶段的标志指导修复 | U-Net标志生成器 | 边界明显 |
ExGANs[ | 不定 | 重建 感知 对抗 | 两阶段的示例指导修复 | 示例GAN | 不规则区域修复 |
SKC[ | 128×128 | 重建 对抗 | 端到端的协作修复 | 协作GAN | 纹理模糊 |
DE-GAN[ | 256×256 | 域嵌入 多模型对抗 | 端到端的人脸修复 | 域嵌入GAN | 多张人脸修复 |
HR[ | 512×512 | TV 内容 L2 对抗 | 两阶段的内容纹理修复 | 图像内容纹理约束 | 纹理伪影 |
HRⅡ[ | 512×512 | L1 hinge对抗 置信度预测 | 两阶段的样本迭代修复 | 反馈机制迭代修复 | 计算资源大 |
CA[ | 512×680 | 对抗 重建 空间衰减重建 | 两阶段的草图指导修复 | Wasserstein GAN | 边缘伪影 |
GC[ | 512×512 | 重建 感知 风格 TV | 两阶段的样本修复 | 样本草图 SN-PatchGAN | 边缘明显 |
SPG-Net[ | 256×256 | L1 对抗 TV | 两阶段的分割指导修复 | 分割预测分割指导 | 纹理重影 |
FII[ | 256×256 | 像素重建 感知 对抗 | 两阶段的轮廓指导修复 | 前景感知 轮廓预测补全 | 纹理伪影 |
StrucFlow[ | 256×256 | 一致性 L1 对抗 | 两阶段的结构纹理修复 | 结构重构纹理生成 | 计算成本高 |
EC[ | 256×256 | 逐步 重建 风格 对抗 | 两阶段的边缘指导修复 | 边缘生成器 | 颜色差异 |
EIGC[ | 256×256 | L1 感知风格 对抗 | 两阶段的边缘指导修复 | 门卷积GAN | 分辨率较低 |
PG-GAN[ | 256×256 | 样本分布 L1 感知 TV | 两阶段的噪声先验修复 | 噪声先验知识 | 自然场景图像 |
CR-Fill[ | 256×256 | 上下文重建 L1 对抗 | 两阶段的上下文修复 | 上下文重建损失 | 分辨率较低 |
PGN[ | 128×128 | L1 对抗 TV | 端到端的语义修复 | 课程学习 渐进式GAN | 不规则区域修复 |
SGI-Net[ | 256×256 | 重建 特征匹配 感知 风格 | 两阶段的分割指导修复 | 空间自适应归一化 | 计算成本高 |
DMFN[ | 256×256 | 自导回归 特征匹配 对抗 | 端到端的特征修复 | 密集多尺度融合块 | 结构扭曲 |
MSGAN[ | 256×256 | L2 WGAN | 端到端的语义修复 | 双金字塔 动态归一化 | 纹理伪影 |
AOTGAN[ | 512×512 | 对抗 重建 风格 感知 | 端到端的语义修复 | 聚合上下文转换GAN | 计算成本高 |
Table 5 Characteristics of GAN image inpainting methods
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
DGM[ | 64×64 | 指导 L1 对抗 | 端到端的语义修复 | 先验知识 上下文损失 | 模型不稳定 |
GFC[ | 128×128 | L2 对抗 像素Softmax | 端到端的语义修复 | 语义解析网络 | 纹理模糊 |
NEO[ | 256×256 | L2 对抗 L1 | 两阶段的标志指导修复 | U-Net标志生成器 | 边界明显 |
ExGANs[ | 不定 | 重建 感知 对抗 | 两阶段的示例指导修复 | 示例GAN | 不规则区域修复 |
SKC[ | 128×128 | 重建 对抗 | 端到端的协作修复 | 协作GAN | 纹理模糊 |
DE-GAN[ | 256×256 | 域嵌入 多模型对抗 | 端到端的人脸修复 | 域嵌入GAN | 多张人脸修复 |
HR[ | 512×512 | TV 内容 L2 对抗 | 两阶段的内容纹理修复 | 图像内容纹理约束 | 纹理伪影 |
HRⅡ[ | 512×512 | L1 hinge对抗 置信度预测 | 两阶段的样本迭代修复 | 反馈机制迭代修复 | 计算资源大 |
CA[ | 512×680 | 对抗 重建 空间衰减重建 | 两阶段的草图指导修复 | Wasserstein GAN | 边缘伪影 |
GC[ | 512×512 | 重建 感知 风格 TV | 两阶段的样本修复 | 样本草图 SN-PatchGAN | 边缘明显 |
SPG-Net[ | 256×256 | L1 对抗 TV | 两阶段的分割指导修复 | 分割预测分割指导 | 纹理重影 |
FII[ | 256×256 | 像素重建 感知 对抗 | 两阶段的轮廓指导修复 | 前景感知 轮廓预测补全 | 纹理伪影 |
StrucFlow[ | 256×256 | 一致性 L1 对抗 | 两阶段的结构纹理修复 | 结构重构纹理生成 | 计算成本高 |
EC[ | 256×256 | 逐步 重建 风格 对抗 | 两阶段的边缘指导修复 | 边缘生成器 | 颜色差异 |
EIGC[ | 256×256 | L1 感知风格 对抗 | 两阶段的边缘指导修复 | 门卷积GAN | 分辨率较低 |
PG-GAN[ | 256×256 | 样本分布 L1 感知 TV | 两阶段的噪声先验修复 | 噪声先验知识 | 自然场景图像 |
CR-Fill[ | 256×256 | 上下文重建 L1 对抗 | 两阶段的上下文修复 | 上下文重建损失 | 分辨率较低 |
PGN[ | 128×128 | L1 对抗 TV | 端到端的语义修复 | 课程学习 渐进式GAN | 不规则区域修复 |
SGI-Net[ | 256×256 | 重建 特征匹配 感知 风格 | 两阶段的分割指导修复 | 空间自适应归一化 | 计算成本高 |
DMFN[ | 256×256 | 自导回归 特征匹配 对抗 | 端到端的特征修复 | 密集多尺度融合块 | 结构扭曲 |
MSGAN[ | 256×256 | L2 WGAN | 端到端的语义修复 | 双金字塔 动态归一化 | 纹理伪影 |
AOTGAN[ | 512×512 | 对抗 重建 风格 感知 | 端到端的语义修复 | 聚合上下文转换GAN | 计算成本高 |
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
TransFill[ | 256×256 | TV VGG | 两阶段的深度颜色修复 | 颜色空间Transformer | 低光照修复 |
FT-TDR[ | 256×256 | 重建 对抗 感知 风格 TV | 两阶段的掩码预测修复 | 频率引导Transformer | 小视觉对象修复 |
TFill[ | 512×512 | Softmax正则化 | 两阶段的语义修复 | Transformer编码器 | 高级语义修复 |
ZITS[ | 1 024×1 024 | 重建 感知 对抗 | 两阶段的示例指导修复 | 增量结构Transformer | 远景复杂修复 |
Table 6 Characteristics of Transformer image inpainting methods
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
TransFill[ | 256×256 | TV VGG | 两阶段的深度颜色修复 | 颜色空间Transformer | 低光照修复 |
FT-TDR[ | 256×256 | 重建 对抗 感知 风格 TV | 两阶段的掩码预测修复 | 频率引导Transformer | 小视觉对象修复 |
TFill[ | 512×512 | Softmax正则化 | 两阶段的语义修复 | Transformer编码器 | 高级语义修复 |
ZITS[ | 1 024×1 024 | 重建 感知 对抗 | 两阶段的示例指导修复 | 增量结构Transformer | 远景复杂修复 |
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
FiNet[ | 256×256 | 交叉熵 KL散度 风格 | 两阶段的形状外观修复 | 形状、外观生成网络 | 单一类型图像 |
PSI[ | 32×32 | 掩码分布 Softmax | 端到端的语义修复 | 像素约束CNN | 训练速度慢 |
PICNet[ | 256×256 | 正则化 外观匹配 对抗 | 端到端的结构修复 | 生成路径 重建路径 | 纹理模糊 |
TDANet[ | 256×256 | 分布 对抗 重建 特征匹配 | 两阶段的文本指导修复 | 双重多模态注意力机制 | 简单编码器 |
UCTGAN[ | 256×256 | 约束 KL散度 重建 对抗 | 两阶段的掩码指导修复 | 掩码先验 | 结构扭曲 |
HVQ-VAE[ | 256×256 | 重建 特征 对抗 | 两阶段的结构纹理修复 | 分层向量量化VAE | 分辨率较低 |
PD-GAN[ | 256×256 | 多样性 重建 匹配 对抗 | 两阶段的概率修复 | 空间概率多样性归一化 | 分辨率较低 |
DRF[ | 256×256 | L1 感知 边缘 对抗 | 端到端的孔洞修复 | 对抗并发编码器 | 颜色差异 |
BAT-Fill[ | 256×256 | 重建 对抗 感知 | 两阶段的结构纹理修复 | 双向自回Transformer | 纹理模糊 |
ICT[ | 256×256 | L1 对抗 | 两阶段的外观纹理修复 | 双向Transformer | 分辨率较低 |
CoModGAN[ | 512×512 | 重建 感知 风格 TV | 两阶段的样本修复 | 协作调制GAN | 结构扭曲 |
MAT[ | 512×512 | 感知对抗 R1正则化 | 端到端的掩码感知修复 | 掩码感知Transformer | 任意形状修复 |
PUT[ | 512×512 | 重建 交叉熵 | 两阶段的样本修复 | 非量化Transformer | 推理时间长 |
Table 7 Characteristics of pluralistic image inpainting methods
方法 | 分辨率 | 损失函数 | 类型 | 优势 | 局限 |
---|---|---|---|---|---|
FiNet[ | 256×256 | 交叉熵 KL散度 风格 | 两阶段的形状外观修复 | 形状、外观生成网络 | 单一类型图像 |
PSI[ | 32×32 | 掩码分布 Softmax | 端到端的语义修复 | 像素约束CNN | 训练速度慢 |
PICNet[ | 256×256 | 正则化 外观匹配 对抗 | 端到端的结构修复 | 生成路径 重建路径 | 纹理模糊 |
TDANet[ | 256×256 | 分布 对抗 重建 特征匹配 | 两阶段的文本指导修复 | 双重多模态注意力机制 | 简单编码器 |
UCTGAN[ | 256×256 | 约束 KL散度 重建 对抗 | 两阶段的掩码指导修复 | 掩码先验 | 结构扭曲 |
HVQ-VAE[ | 256×256 | 重建 特征 对抗 | 两阶段的结构纹理修复 | 分层向量量化VAE | 分辨率较低 |
PD-GAN[ | 256×256 | 多样性 重建 匹配 对抗 | 两阶段的概率修复 | 空间概率多样性归一化 | 分辨率较低 |
DRF[ | 256×256 | L1 感知 边缘 对抗 | 端到端的孔洞修复 | 对抗并发编码器 | 颜色差异 |
BAT-Fill[ | 256×256 | 重建 对抗 感知 | 两阶段的结构纹理修复 | 双向自回Transformer | 纹理模糊 |
ICT[ | 256×256 | L1 对抗 | 两阶段的外观纹理修复 | 双向Transformer | 分辨率较低 |
CoModGAN[ | 512×512 | 重建 感知 风格 TV | 两阶段的样本修复 | 协作调制GAN | 结构扭曲 |
MAT[ | 512×512 | 感知对抗 R1正则化 | 端到端的掩码感知修复 | 掩码感知Transformer | 任意形状修复 |
PUT[ | 512×512 | 重建 交叉熵 | 两阶段的样本修复 | 非量化Transformer | 推理时间长 |
类型 | 数据集 | 年份 | 总数 | 分辨率 | 使用方法 |
---|---|---|---|---|---|
建筑 | Facade[ | 2013 | 606 | — | [ |
纹理 | DTD[ | 2014 | 5 640 | — | [ |
街景 | SVHN[ | 2011 | >600 000 | 32×32 | [ |
Paris StreetView[ | 2012 | 15 000 | 936×537 | [ | |
Cityscapes[ | 2016 | 25 000 | 2 048×1 024 | [ | |
场景 | MS COCO[ | 2014 | 328 000 | — | [ |
ImageNet[ | 2015 | 14 197 122 | — | [ | |
Places2[ | 2017 | 1 000 000 | 256×256 | [ | |
人脸 | Helen Face[ | 2012 | 2 000 | — | [ |
CelebA[ | 2015 | 202 599 | 178×218 | [ | |
CelebA-HQ[ | 2017 | 30 000 | 1 024×1 024 | [ | |
FFHQ[ | 2019 | 70 000 | 1 024×1 024 | [ |
Table 8 Description of common datasets
类型 | 数据集 | 年份 | 总数 | 分辨率 | 使用方法 |
---|---|---|---|---|---|
建筑 | Facade[ | 2013 | 606 | — | [ |
纹理 | DTD[ | 2014 | 5 640 | — | [ |
街景 | SVHN[ | 2011 | >600 000 | 32×32 | [ |
Paris StreetView[ | 2012 | 15 000 | 936×537 | [ | |
Cityscapes[ | 2016 | 25 000 | 2 048×1 024 | [ | |
场景 | MS COCO[ | 2014 | 328 000 | — | [ |
ImageNet[ | 2015 | 14 197 122 | — | [ | |
Places2[ | 2017 | 1 000 000 | 256×256 | [ | |
人脸 | Helen Face[ | 2012 | 2 000 | — | [ |
CelebA[ | 2015 | 202 599 | 178×218 | [ | |
CelebA-HQ[ | 2017 | 30 000 | 1 024×1 024 | [ | |
FFHQ[ | 2019 | 70 000 | 1 024×1 024 | [ |
类型 | 评价指标 | 数值大小 | 作用 | 优势 | 局限性 |
---|---|---|---|---|---|
全参考 | MAE[ | ↓ | 衡量图像误差 | 模型稳健 | 不利于模型收敛 |
MSE[ | ↓ | 衡量图像相似度 | 加快模型收敛 | 受误差影响大 | |
UQI[ | ↑ | 衡量图像质量 | 判断相关性结构失真 | 较难捕捉相关性 | |
PSNR[ | ↑ | 衡量图像失真度 | 简单快速 | 依赖像素点误差 | |
SSIM[ | ↑ | 衡量图像结构相似性 | 引入结构判断 | 非结构性误差难以判断 | |
MS-SSIM[ | ↑ | 衡量图像结构相似性 | 多尺度结构判断 | 聚合度过高 | |
LPIPS[ | ↓ | 衡量图像感知相似性、多样性 | 学习感知相似性 | 难以判断相关性不高任务 | |
FID[ | ↓ | 衡量图像相似度、多样性 | 鲁棒性高 | 依赖特征出现 | |
半参考 | BPE[ | ↓ | 衡量图像边界平滑度 | 引入边界误差 | 未考虑全局信息 |
无参考 | IS[ | ↑ | 衡量图像感知质量、多样性 | 判断语义相关性 | 无法检测过度拟合 |
MIS[ | ↑ | 衡量图像质量 | 无需大量数据集 | 仅适用基于GAN方法 |
Table 9 Characteristics of image evaluation index
类型 | 评价指标 | 数值大小 | 作用 | 优势 | 局限性 |
---|---|---|---|---|---|
全参考 | MAE[ | ↓ | 衡量图像误差 | 模型稳健 | 不利于模型收敛 |
MSE[ | ↓ | 衡量图像相似度 | 加快模型收敛 | 受误差影响大 | |
UQI[ | ↑ | 衡量图像质量 | 判断相关性结构失真 | 较难捕捉相关性 | |
PSNR[ | ↑ | 衡量图像失真度 | 简单快速 | 依赖像素点误差 | |
SSIM[ | ↑ | 衡量图像结构相似性 | 引入结构判断 | 非结构性误差难以判断 | |
MS-SSIM[ | ↑ | 衡量图像结构相似性 | 多尺度结构判断 | 聚合度过高 | |
LPIPS[ | ↓ | 衡量图像感知相似性、多样性 | 学习感知相似性 | 难以判断相关性不高任务 | |
FID[ | ↓ | 衡量图像相似度、多样性 | 鲁棒性高 | 依赖特征出现 | |
半参考 | BPE[ | ↓ | 衡量图像边界平滑度 | 引入边界误差 | 未考虑全局信息 |
无参考 | IS[ | ↑ | 衡量图像感知质量、多样性 | 判断语义相关性 | 无法检测过度拟合 |
MIS[ | ↑ | 衡量图像质量 | 无需大量数据集 | 仅适用基于GAN方法 |
方法 | CelebA-HQ[ | Paris StreetView[ | Places2[ | |||
---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | |
GMCNN[ | 25.00 | 90.50 | 24.65 | 86.50 | 20.16 | 86.17 |
MED[ | 26.49 | 85.90 | 24.67 | 80.80 | 23.64 | 77.80 |
PEN-Net[ | 25.47 | 89.03 | — | — | 23.80 | 78.68 |
MUSICAL[ | 26.64 | 90.08 | 24.42 | 84.28 | 21.84 | 80.25 |
GC[ | 25.94 | 83.30 | 24.13 | 77.30 | 22.73 | 76.10 |
DMFN[ | 26.50 | 89.32 | 25.00 | 85.63 | 22.36 | 81.94 |
FT-TDR[ | 26.16 | 91.20 | — | — | — | — |
ZITS[ | — | — | — | — | 24.42 | 87.00 |
平均值 | 26.03 | 88.48 | 24.56 | 82.00 | 22.52 | 79.35 |
Table 10 Quantitative analysis of single image inpainting methods on regular regions
方法 | CelebA-HQ[ | Paris StreetView[ | Places2[ | |||
---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | |
GMCNN[ | 25.00 | 90.50 | 24.65 | 86.50 | 20.16 | 86.17 |
MED[ | 26.49 | 85.90 | 24.67 | 80.80 | 23.64 | 77.80 |
PEN-Net[ | 25.47 | 89.03 | — | — | 23.80 | 78.68 |
MUSICAL[ | 26.64 | 90.08 | 24.42 | 84.28 | 21.84 | 80.25 |
GC[ | 25.94 | 83.30 | 24.13 | 77.30 | 22.73 | 76.10 |
DMFN[ | 26.50 | 89.32 | 25.00 | 85.63 | 22.36 | 81.94 |
FT-TDR[ | 26.16 | 91.20 | — | — | — | — |
ZITS[ | — | — | — | — | 24.42 | 87.00 |
平均值 | 26.03 | 88.48 | 24.56 | 82.00 | 22.52 | 79.35 |
掩码区域面积占比 | 方法 | CelebA-HQ[ | Paris StreetView[ | Places2[ | ||||
---|---|---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | |||
10%~20% | MED[ | 30.97 | 97.10 | 30.25 | 95.40 | 29.05 | 94.10 | |
MADF[ | 33.77 | 98.40 | 31.99 | 96.60 | 29.42 | 96.10 | ||
PEN-Net[ | 29.76 | 96.50 | 28.97 | 93.90 | 27.90 | 92.70 | ||
RFR-Net[ | 31.87 | 97.60 | 31.43 | 96.20 | 27.75 | 95.20 | ||
EC[ | 33.51 | 96.10 | 31.23 | 93.80 | 27.95 | 93.90 | ||
GC[ | 31.02 | 97.10 | 28.95 | 94.00 | 27.42 | 91.70 | ||
FT-TDR[ | 31.75 | 97.80 | — | — | — | — | ||
ZITS[ | — | — | — | — | 28.31 | 94.20 | ||
平均值 | 31.80 | 97.23 | 30.47 | 94.98 | 28.26 | 93.99 | ||
20%~30% | MED[ | 27.75 | 94.30 | 27.08 | 90.90 | 25.92 | 88.80 | |
MADF[ | 30.42 | 96.70 | 28.71 | 93.30 | 26.29 | 92.20 | ||
PEN-Net[ | 26.79 | 93.30 | 26.03 | 88.40 | 25.09 | 86.70 | ||
RFR-Net[ | 29.07 | 95.70 | 28.39 | 92.80 | 27.24 | 91.10 | ||
EC[ | 30.02 | 92.80 | 28.26 | 89.20 | 24.92 | 86.10 | ||
GC[ | 27.57 | 94.10 | 25.73 | 88.50 | 24.65 | 85.60 | ||
FT-TDR[ | 28.57 | 95.90 | — | — | — | — | ||
ZITS[ | — | — | — | — | 25.40 | 90.20 | ||
平均值 | 28.60 | 94.69 | 27.37 | 90.52 | 25.64 | 88.67 | ||
30%~40% | MED[ | 25.36 | 90.80 | 24.91 | 85.40 | 23.78 | 82.50 | |
MADF[ | 27.95 | 94.50 | 26.44 | 89.20 | 23.84 | 87.30 | ||
PEN-Net[ | 24.70 | 89.40 | 24.12 | 82.10 | 23.21 | 80.10 | ||
RFR-Net[ | 26.87 | 93.10 | 26.30 | 88.60 | 22.63 | 81.90 | ||
EC[ | 27.39 | 89.00 | 26.05 | 84.20 | 22.84 | 79.90 | ||
GC[ | 25.03 | 90.20 | 23.62 | 82.50 | 22.81 | 79.20 | ||
FT-TDR[ | 26.40 | 93.20 | — | — | — | — | ||
ZITS[ | — | — | — | — | 23.51 | 86.00 | ||
平均值 | 26.24 | 91.46 | 25.24 | 85.33 | 23.23 | 82.41 | ||
40%~50% | MED[ | 23.47 | 86.50 | 23.12 | 78.70 | 22.07 | 75.20 | |
MADF[ | 25.99 | 91.70 | 24.65 | 84.10 | 21.92 | 81.20 | ||
PEN-Net[ | 23.06 | 84.90 | 22.56 | 74.50 | 21.74 | 72.70 | ||
RFR-Net[ | 25.09 | 90.20 | 24.60 | 83.60 | 23.48 | 80.50 | ||
EC[ | 25.28 | 84.60 | 24.20 | 78.40 | 21.16 | 73.10 | ||
GC[ | 23.10 | 85.60 | 21.95 | 75.70 | 21.34 | 72.20 | ||
FT-TDR[ | 24.45 | 88.50 | — | — | — | — | ||
ZITS[ | — | — | — | — | 22.11 | 81.70 | ||
平均值 | 24.35 | 87.43 | 23.51 | 79.17 | 21.97 | 76.66 |
Table 11 Quantitative analysis of single image inpainting methods on irregular regions
掩码区域面积占比 | 方法 | CelebA-HQ[ | Paris StreetView[ | Places2[ | ||||
---|---|---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | |||
10%~20% | MED[ | 30.97 | 97.10 | 30.25 | 95.40 | 29.05 | 94.10 | |
MADF[ | 33.77 | 98.40 | 31.99 | 96.60 | 29.42 | 96.10 | ||
PEN-Net[ | 29.76 | 96.50 | 28.97 | 93.90 | 27.90 | 92.70 | ||
RFR-Net[ | 31.87 | 97.60 | 31.43 | 96.20 | 27.75 | 95.20 | ||
EC[ | 33.51 | 96.10 | 31.23 | 93.80 | 27.95 | 93.90 | ||
GC[ | 31.02 | 97.10 | 28.95 | 94.00 | 27.42 | 91.70 | ||
FT-TDR[ | 31.75 | 97.80 | — | — | — | — | ||
ZITS[ | — | — | — | — | 28.31 | 94.20 | ||
平均值 | 31.80 | 97.23 | 30.47 | 94.98 | 28.26 | 93.99 | ||
20%~30% | MED[ | 27.75 | 94.30 | 27.08 | 90.90 | 25.92 | 88.80 | |
MADF[ | 30.42 | 96.70 | 28.71 | 93.30 | 26.29 | 92.20 | ||
PEN-Net[ | 26.79 | 93.30 | 26.03 | 88.40 | 25.09 | 86.70 | ||
RFR-Net[ | 29.07 | 95.70 | 28.39 | 92.80 | 27.24 | 91.10 | ||
EC[ | 30.02 | 92.80 | 28.26 | 89.20 | 24.92 | 86.10 | ||
GC[ | 27.57 | 94.10 | 25.73 | 88.50 | 24.65 | 85.60 | ||
FT-TDR[ | 28.57 | 95.90 | — | — | — | — | ||
ZITS[ | — | — | — | — | 25.40 | 90.20 | ||
平均值 | 28.60 | 94.69 | 27.37 | 90.52 | 25.64 | 88.67 | ||
30%~40% | MED[ | 25.36 | 90.80 | 24.91 | 85.40 | 23.78 | 82.50 | |
MADF[ | 27.95 | 94.50 | 26.44 | 89.20 | 23.84 | 87.30 | ||
PEN-Net[ | 24.70 | 89.40 | 24.12 | 82.10 | 23.21 | 80.10 | ||
RFR-Net[ | 26.87 | 93.10 | 26.30 | 88.60 | 22.63 | 81.90 | ||
EC[ | 27.39 | 89.00 | 26.05 | 84.20 | 22.84 | 79.90 | ||
GC[ | 25.03 | 90.20 | 23.62 | 82.50 | 22.81 | 79.20 | ||
FT-TDR[ | 26.40 | 93.20 | — | — | — | — | ||
ZITS[ | — | — | — | — | 23.51 | 86.00 | ||
平均值 | 26.24 | 91.46 | 25.24 | 85.33 | 23.23 | 82.41 | ||
40%~50% | MED[ | 23.47 | 86.50 | 23.12 | 78.70 | 22.07 | 75.20 | |
MADF[ | 25.99 | 91.70 | 24.65 | 84.10 | 21.92 | 81.20 | ||
PEN-Net[ | 23.06 | 84.90 | 22.56 | 74.50 | 21.74 | 72.70 | ||
RFR-Net[ | 25.09 | 90.20 | 24.60 | 83.60 | 23.48 | 80.50 | ||
EC[ | 25.28 | 84.60 | 24.20 | 78.40 | 21.16 | 73.10 | ||
GC[ | 23.10 | 85.60 | 21.95 | 75.70 | 21.34 | 72.20 | ||
FT-TDR[ | 24.45 | 88.50 | — | — | — | — | ||
ZITS[ | — | — | — | — | 22.11 | 81.70 | ||
平均值 | 24.35 | 87.43 | 23.51 | 79.17 | 21.97 | 76.66 |
方法 | CelebA-HQ[ | ||||||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | IS[139] ↑ | MIS[109] ↑ | ||||||
UCTGAN[ | 26.38 | 88.62 | 3.012 7 | 0.017 8 | |||||
HVQ-VAE[ | 24.56 | 86.75 | 3.456 0 | 0.024 5 | |||||
方法 | CelebA-HQ[ | Places2[ | |||||||
LPIPS[ | LPIPS[ | LPIPS[ | LPIPS[ | ||||||
PICNet[ | 0.029 0 | 0.088 0 | 0.109 6 | 0.123 8 | |||||
UCTGAN[ | 0.030 0 | 0.092 0 | — | — | |||||
PD-GAN[ | — | — | 0.123 8 | 0.179 9 | |||||
平均值 | 0.029 5 | 0.090 0 | 0.116 7 | 0.151 9 |
Table 12 Quantitative analysis of pluralistic image inpainting methods on regular regions
方法 | CelebA-HQ[ | ||||||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | IS[139] ↑ | MIS[109] ↑ | ||||||
UCTGAN[ | 26.38 | 88.62 | 3.012 7 | 0.017 8 | |||||
HVQ-VAE[ | 24.56 | 86.75 | 3.456 0 | 0.024 5 | |||||
方法 | CelebA-HQ[ | Places2[ | |||||||
LPIPS[ | LPIPS[ | LPIPS[ | LPIPS[ | ||||||
PICNet[ | 0.029 0 | 0.088 0 | 0.109 6 | 0.123 8 | |||||
UCTGAN[ | 0.030 0 | 0.092 0 | — | — | |||||
PD-GAN[ | — | — | 0.123 8 | 0.179 9 | |||||
平均值 | 0.029 5 | 0.090 0 | 0.116 7 | 0.151 9 |
掩码区域面积占比 | 方法 | FFHQ[ | ImageNet[ | Places2[ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | FID[137] ↓ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | FID[137] ↓ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | FID[137] ↓ | |||
20%~40% | PICNet[ | 26.78 | 93.30 | 14.51 | 24.01 | 86.70 | 47.75 | 26.10 | 86.50 | 26.39 | |
ICT[ | 28.24 | 95.20 | 10.51 | 24.76 | 88.80 | 28.82 | 26.71 | 88.40 | 20.43 | ||
PUT[ | 26.88 | 93.60 | 12.78 | 24.24 | 87.50 | 21.27 | 25.45 | 86.10 | 19.62 | ||
平均值 | 27.30 | 94.03 | 12.60 | 24.34 | 87.67 | 32.61 | 26.09 | 87.00 | 21.15 | ||
40%~60% | PICNet[ | 21.72 | 81.10 | 25.03 | 18.84 | 64.20 | 101.28 | 21.50 | 68.00 | 49.09 | |
ICT[ | 23.08 | 86.40 | 20.84 | 20.14 | 72.10 | 59.49 | 22.64 | 73.90 | 34.21 | ||
PUT[ | 22.38 | 84.50 | 21.38 | 19.74 | 70.40 | 45.15 | 21.53 | 70.30 | 31.49 | ||
平均值 | 22.39 | 84.00 | 22.42 | 19.57 | 68.90 | 68.64 | 21.89 | 70.73 | 38.26 | ||
10%~60% | PICNet[ | 25.58 | 88.90 | 17.36 | 22.71 | 79.10 | 59.43 | 25.04 | 80.60 | 33.47 | |
ICT[ | 26.16 | 92.20 | 14.04 | 23.78 | 83.50 | 35.84 | 25.98 | 83.90 | 25.42 | ||
PUT[ | 25.94 | 90.60 | 14.55 | 23.26 | 80.60 | 27.65 | 24.49 | 80.60 | 22.12 | ||
平均值 | 25.89 | 90.57 | 15.32 | 23.25 | 81.07 | 40.97 | 25.17 | 81.70 | 27.00 |
Table 13 Quantitative analysis of pluralistic image inpainting methods on irregular regions
掩码区域面积占比 | 方法 | FFHQ[ | ImageNet[ | Places2[ | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PSNR/dB[134] ↑ | SSIM/%[135] ↑ | FID[137] ↓ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | FID[137] ↓ | PSNR/dB[134] ↑ | SSIM/%[135] ↑ | FID[137] ↓ | |||
20%~40% | PICNet[ | 26.78 | 93.30 | 14.51 | 24.01 | 86.70 | 47.75 | 26.10 | 86.50 | 26.39 | |
ICT[ | 28.24 | 95.20 | 10.51 | 24.76 | 88.80 | 28.82 | 26.71 | 88.40 | 20.43 | ||
PUT[ | 26.88 | 93.60 | 12.78 | 24.24 | 87.50 | 21.27 | 25.45 | 86.10 | 19.62 | ||
平均值 | 27.30 | 94.03 | 12.60 | 24.34 | 87.67 | 32.61 | 26.09 | 87.00 | 21.15 | ||
40%~60% | PICNet[ | 21.72 | 81.10 | 25.03 | 18.84 | 64.20 | 101.28 | 21.50 | 68.00 | 49.09 | |
ICT[ | 23.08 | 86.40 | 20.84 | 20.14 | 72.10 | 59.49 | 22.64 | 73.90 | 34.21 | ||
PUT[ | 22.38 | 84.50 | 21.38 | 19.74 | 70.40 | 45.15 | 21.53 | 70.30 | 31.49 | ||
平均值 | 22.39 | 84.00 | 22.42 | 19.57 | 68.90 | 68.64 | 21.89 | 70.73 | 38.26 | ||
10%~60% | PICNet[ | 25.58 | 88.90 | 17.36 | 22.71 | 79.10 | 59.43 | 25.04 | 80.60 | 33.47 | |
ICT[ | 26.16 | 92.20 | 14.04 | 23.78 | 83.50 | 35.84 | 25.98 | 83.90 | 25.42 | ||
PUT[ | 25.94 | 90.60 | 14.55 | 23.26 | 80.60 | 27.65 | 24.49 | 80.60 | 22.12 | ||
平均值 | 25.89 | 90.57 | 15.32 | 23.25 | 81.07 | 40.97 | 25.17 | 81.70 | 27.00 |
[1] |
JAM J, KENDRICK C, WALKER K, et al. A comprehensive review of past and present image inpainting methods[J]. Computer Vision and Image Understanding, 2021, 203: 103147.
DOI URL |
[2] | BERTALMIO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, Jul 23-28, 2000. New York: ACM, 2000: 417-424. |
[3] |
QURESHI M A, DERICHE M. A bibliography of pixel-based blind image forgery detection techniques[J]. Signal Processing: Image Communication, 2015, 39: 46-74.
DOI URL |
[4] |
GUILLEMOT C, LE MEUR O. Image inpainting: overview and recent advances[J]. IEEE Signal Processing Magazine, 2013, 31(1): 127-144.
DOI URL |
[5] |
ELHARROUSS O, ALMAADEED N, AL-MAADEED S, et al. Image inpainting: a review[J]. Neural Processing Letters, 2020, 51(2): 2007-2028.
DOI URL |
[6] | RUMELHART D E, HINTON G E, WILLIAMS R J. Learning internal representations by error propagation[R]. California Univ San Diego La Jolla Inst for Cognitive Science, 1985. |
[7] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. |
[8] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680. |
[9] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. |
[10] |
BALLESTER C, BERTALMIO M, CASELLES V, et al. Filling-in by joint interpolation of vector fields and gray levels[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1200-1211.
DOI PMID |
[11] |
SHEN J, CHAN T F. Mathematical models for local nontexture inpaintings[J]. SIAM Journal on Applied Mathematics, 2002, 62(3): 1019-1043.
DOI URL |
[12] |
CHAN T F, SHEN J. Nontexture inpainting by curvature-driven diffusions[J]. Journal of Visual Communication and Image Representation, 2001, 12(4): 436-449.
DOI URL |
[13] |
TSAI A, YEZZI A, WILLSKY A S. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1169-1186.
DOI PMID |
[14] |
SHEN J, KANG S H, CHAN T F. Euler’s elastica and curvature-based inpainting[J]. SIAM Journal on Applied Mathematics, 2003, 63(2): 564-592.
DOI URL |
[15] | 周密, 彭进业, 赵健, 等. 改进的整体变分法在图像修复中的应用[J]. 计算机工程与应用, 2007, 43(27): 88-90. |
ZHOU M, PENG J Y, ZHAO J, et al. Improved total variation method for image inpainting[J]. Computer Engineering and Applications, 2007, 43(27): 88-90. | |
[16] | 田艳艳, 祝轩, 彭进业, 等. 一种基于整体变分的图像修补算法及其应用[J]. 计算机工程与应用, 2008, 44(26): 180-182. |
TIAN Y Y, ZHU X, PENG J Y, et al. Implementation for digital image inpainting based on total variation[J]. Computer Engineering and Applications, 2008, 44(26): 180-182. | |
[17] | 李薇, 何金海, 屈磊, 等. 一种改进的BSCB修复模型[J]. 计算机工程与应用, 2008, 44(9): 184-186. |
LI W, HE J H, QU L, et al. Improved method for BSCB image inpainting[J]. Computer Engineering and Applications, 2008, 44(9): 184-186. | |
[18] | 刘庚龙, 檀结庆. 一种改进的整体变分图像修复方法[J]. 计算机工程与应用, 2012, 48(7): 194-196. |
LIU G L, TAN J Q. Improved method of total variation image inpainting[J]. Computer Engineering and Applications, 2012, 48(7): 194-196. | |
[19] | EFROS A A, LEUNG T K. Texture synthesis by non-parametric sampling[C]// Proceedings of the 1999 International Conference on Computer Vision, Kerkyra, Sep 20-25, 1999. Washington: IEEE Computer Society, 1999: 1033-1038. |
[20] | WEI L Y, LEVOY M. Fast texture synthesis using tree-structured vector quantization[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, Jul 23-28, 2000. New York: ACM, 2000: 479-488. |
[21] | ASHIKHMIN M. Synthesizing natural textures[C]// Proceedings of the 2001 Symposium on Interactive 3D Graphics, Chapel Hill, Mar 26-29, 2001. New York: ACM, 2001: 217-226. |
[22] |
DRORI I, COHEN-OR D, YESHURUN H. Fragment-based image completion[J]. ACM Transactions on Graphics, 2003, 22(3): 303-312.
DOI URL |
[23] | LEVIN A, ZOMET A, WEISS Y. Learning how to inpaint from global image statistics[C]// Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, Oct 14-17, 2003. Washington: IEEE Computer Society, 2003: 305-312. |
[24] |
CRIMINISI A, PÉREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212.
PMID |
[25] | 张申华, 王克刚, 祝轩. 局部特征信息约束的改进Criminisi算法[J]. 计算机工程与应用, 2014, 50(8): 127-130. |
ZHANG S H, WANG K G, ZHU X. Improved Criminisi algorithm constrained by local feature[J]. Computer Engineering and Applications, 2014, 50(8): 127-130. | |
[26] | 方宝龙, 尹立新, 常晨. 改进的基于样例的图像修复方法[J]. 计算机工程与应用, 2014, 50(8): 143-146. |
FANG B L, YIN L X, CHANG C. Improved exemplar-based algorithm for image inpainting[J]. Computer Engineering and Applications, 2014, 50(8): 143-146. | |
[27] |
赵娜, 王慧琴, 吴萌. 基于马尔科夫随机场匹配准则的Criminisi修复算法[J]. 计算机科学与探索, 2017, 11(7): 1150-1158.
DOI |
ZHAO N, WANG H Q, WU M. Criminisi digital inpainting algorithm based on Markov random field matching criterion[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(7): 1150-1158.
DOI |
|
[28] |
CROSS G R, JAIN A K. Markov random field texture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983(1): 25-39.
PMID |
[29] | BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): 24. |
[30] | HAYS J, EFROS A A. Scene completion using millions of photographs[J]. ACM Transactions on Graphics, 2007, 26(3): 4. |
[31] | PATHAK D, KRÄHENBÜHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2536-2544. |
[32] | IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14. |
[33] | LIAO L, HU R, XIAO J, et al. Edge-aware context encoder for image inpainting[C]// Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Seoul, Apr 22-27, 2018. Piscataway: IEEE, 2018: 3156-3160. |
[34] | VO H V, DUONG N Q K, PÉREZ P. Structural inpainting[C]// Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 1948-1956. |
[35] | YANG J, QI Z, SHI Y. Learning to incorporate structure knowledge for image inpainting[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020: 12605-12612. |
[36] | CAO C, FU Y. Learning a sketch tensor space for image inpainting of man-made scenes[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14509-14518. |
[37] | YU J, LIN Z, YANG J, et al. Free-form image inpainting with gated convolution[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019. Piscataway: IEEE, 2019: 4470-4479. |
[38] | WANG Y, TAO X, QI X, et al. Image inpainting via generative multi-column convolutional neural networks[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montréal, Dec 3-8, 2018: 329-338. |
[39] | LIU H, JIANG B, SONG Y, et al. Rethinking image inpainting via a mutual encoder-decoder with feature equalizations[C]// LNCS 12347: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 725-741. |
[40] |
刘微容, 米彦春, 杨帆, 等. 基于多级解码网络的图像修复[J]. 电子学报, 2022, 50(3): 625-636.
DOI |
LIU W R, MI Y C, YANG F, et al. Generative image inpainting with multi-stage decoding network[J]. Acta Electronica Sinica, 2022, 50(3): 625-636. | |
[41] | SAGONG M, SHIN Y, KIM S, et al. PEPSI: fast image inpainting with parallel decoding network[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Los Angeles, Jun 15-21, 2019. Piscataway: IEEE, 2019: 11360-11368. |
[42] | YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 5505-5514. |
[43] |
SHIN Y G, SAGONG M C, YEO Y J, et al. PEPSI++: fast and lightweight network for image inpainting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 252-265.
DOI URL |
[44] | SUIN M, PUROHIT K, RAJAGOPALAN A N. Distillation-guided image inpainting[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2461-2470. |
[45] | YU T, GUO Z, JIN X, et al. Region normalization for image inpainting[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12733-12740. |
[46] |
ZHU M, HE D, LI X, et al. Image inpainting by end-to-end cascaded refinement with mask awareness[J]. IEEE Transactions on Image Processing, 2021, 30: 4855-4866.
DOI URL |
[47] |
李健, 孙大松, 张备伟. 结合双编码器与对抗训练的图像修复[J]. 计算机工程与应用, 2021, 57(7): 192-197.
DOI |
LI J, SUN D S, ZHANG B W. Image restoration using dual-encoder and adversarial training[J]. Computer Engineering and Applications, 2021, 57(7): 192-197.
DOI |
|
[48] |
XU R, GUO M, WANG J, et al. Texture memory-augmented deep patch-based image inpainting[J]. IEEE Transactions on Image Processing, 2021, 30: 9112-9124.
DOI URL |
[49] | WANG W, ZHANG J, NIU L, et al. Parallel multi-resolution fusion network for image inpainting[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14539-14548. |
[50] | 曹承瑞, 刘微容, 史长宏, 等. 多级注意力传播驱动的生成式图像修复方法[J]. 自动化学报, 2022, 48(5): 1343-1352. |
CAO C R, LIU W R, SHI C H, et al. Generative image inpainting with attention propagation[J]. Acta Automatica Sinica, 2022, 48(5): 1343-1352. | |
[51] | YU Y, ZHAN F, LU S, et al. WaveFill: a wavelet-based generation network for image inpainting[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14094-14103. |
[52] | SONG Y, YANG C, LIN Z, et al. Contextual-based image inpainting: infer, match, and translate[C]// LNCS 11206: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-18. |
[53] | WANG T, OUYANG H, CHEN Q. Image inpainting with external-internal learning and monochromic bottleneck[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2021: 5120-5129. |
[54] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440. |
[55] | YAN Z, LI X, LI M, et al. Shift-net: image inpainting via deep feature rearrangement[C]// LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19. |
[56] | GUO Z Y, CHEN Z B, YU T, et al. Progressive image inpainting with full-resolution residual network[C]// Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 2496-2504. |
[57] | LIU G, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]// LNCS 11215:Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 89-105. |
[58] | HONG X, XIONG P, JI R, et al. Deep fusion network for image completion[C]// Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 2033-2042. |
[59] | ZENG Y H, FU J L, CHAO H Y, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1486-1494. |
[60] |
QIN J, BAI H, ZHAO Y. Multi-scale attention network for image inpainting[J]. Computer Vision and Image Understanding, 2021, 204: 103155.
DOI URL |
[61] | WANG C, SHAO M, MENG D, et al. Dual-pyramidal image inpainting with dynamic normalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32. |
[62] | LIU H Y, JIANG B, XIAO Y, et al. Coherent semantic attention for image inpainting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4170-4179. |
[63] |
QUAN W, ZHANG R, ZHANG Y, et al. Image inpainting with local and global refinement[J]. IEEE Transactions on Image Processing, 2022, 31: 2405-2420.
DOI PMID |
[64] | XIE C H, LIU S H, LI C, et al. Image inpainting with learnable bidirectional attention maps[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8857-8866. |
[65] | WANG Y, CHEN Y C, TAO X, et al. VCNet: a robust approach to blind image inpainting[C]// LNCS 12370: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 752-768. |
[66] |
WANG N, ZHANG Y, ZHANG L. Dynamic selection network for image inpainting[J]. IEEE Transactions on Image Processing, 2021, 30: 1784-1798.
DOI PMID |
[67] | LI J Y, HE F X, ZHANG L F, et al. Progressive reconstruction of visual structure for image inpainting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 5962-5971. |
[68] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with image inpainting via conditional texture and structure dual generationtional adversarial networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1125-1134. |
[69] | MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[J]. arXiv:1802.05957, 2018. |
[70] | LIAO L, XIAO J, WANG Z, et al. Guidance and evaluation: semantic-aware image inpainting for mixed scenes[C]// LNCS 12372: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 683-700. |
[71] | GUO X, YANG H, HUANG D. Image inpainting via conditional texture and structure dual generation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14114-14123. |
[72] | WANG N, LI J Y, ZHANG L F, et al. MUSICAL: multi-scale image contextual attention learning for inpainting[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3748-3754. |
[73] | LIAO L, XIAO J, WANG Z, et al. Image inpainting guided by coherence priors of semantics and textures[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2021: 6539-6548. |
[74] | LI J, WANG N, ZHANG L, et al. Recurrent feature reasoning for image inpainting[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 7757-7765. |
[75] | ALBAWI S, MOHAMMED T A, AL-ZAWI S. Understanding of a convolutional neural network[C]// Proceedings of the 2017 International Conference on Engineering and Technology, Antalya, Aug 21-23, 2017. Piscataway: IEEE, 2017: 1-6. |
[76] | YI Z L, TANG Q, AZIZI S, et al. Contextual residual aggregation for ultra high-resolution image inpainting[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 19-25, 2020. Piscataway: IEEE, 2020: 7505-7514. |
[77] | YEH R A, CHEN C, YIAN LIM T, et al. Semantic image inpainting with deep generative models[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6882-6890. |
[78] | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015. |
[79] | LI Y J, LIU S F, YANG J M, et al. Generative face completion[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5892-5900. |
[80] | SUN Q R, MA L Q, OH S J, et al. Natural and effective obfuscation by head inpainting[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5050-5059. |
[81] | DOLHANSKY B, FERRER C C. Eye in-painting with exemplar generative adversarial networks[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7902-7911. |
[82] | LIAO H F, FUNKA-LEA G, ZHENG Y, et al. Face completion with semantic knowledge and collaborative adversarial learning[C]// LNCS 11361: Proceedings of the 14th Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham: Springer, 2018: 382-397. |
[83] |
ZHANG X, WANG X, SHI C H, et al. DE-GAN: domain embedded GAN for high quality face image inpainting[J]. Pattern Recognition, 2022, 124: 108415.
DOI URL |
[84] | YANG C, LU X, LIN Z, et al. High-resolution image inpainting using multi-scale neural patch synthesis[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6721-6729. |
[85] | ZENG Y, LIN Z, YANG J, et al. High-resolution image inpainting with iterative confidence feedback and guided upsampling[C]// LNCS 12364: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 1-17. |
[86] | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5767-5777. |
[87] | SONG Y, YANG C, SHEN Y, et al. SPG-Net: segmentation prediction and guidance network for image inpainting[J]. arXiv:1805.03356, 2018. |
[88] | XIONG W, YU J, LIN Z, et al. Foreground-aware image inpainting[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5840-5848. |
[89] | REN Y, YU X, ZHANG R, et al. StructureFlow: image inpainting via structure-aware appearance flow[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019. Piscataway: IEEE, 2019: 181-190. |
[90] | NAZERI K, NG E, JOSEPH T, et al. EdgeConnect: generative image inpainting with adversarial edge learning[J]. arXiv:1901.00212, 2019. |
[91] |
王富平, 李文楼, 刘颖, 等. 结合边缘信息和门卷积的人脸修复算法[J]. 计算机科学与探索, 2021, 15(1): 150-162.
DOI |
WANG F P, LI W L, LIU Y, et al. Face inpainting algorithm combining edge information with gated convolution[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 150-162.
DOI |
|
[92] | LAHIRI A, JAIN A K, AGRAWAL S, et al. Prior guided GAN based semantic inpainting[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 19-25, 2020. Piscataway: IEEE, 2020: 13693-13702. |
[93] | ZENG Y, LIN Z, LU H C, et al. CR-Fill: generative image inpainting with auxiliary contextual reconstruction[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 14144-14153. |
[94] | ZHANG H, HU Z, LUO C, et al. Semantic image inpainting with progressive generative networks[C]// Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 1939-1947. |
[95] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
PMID |
[96] | ARDINO P, LIU Y, RICCI E, et al. Semantic-guided inpainting network for complex urban scenes manipulation[C]// Proceedings of the 25th International Conference on Pattern Recognition, Milan, Jan 10-15, 2021. Piscataway: IEEE, 2021: 9280-9287. |
[97] | HUI Z, LI J, WANG X, et al. Image fine-grained inpainting[J]. arXiv:2002.02609, 2020. |
[98] |
李克文, 张文韬, 邵明文, 等. 多尺度生成式对抗网络图像修复算法[J]. 计算机科学与探索, 2020, 14(1): 159-170.
DOI |
LI K W, ZHANG W T, SHAO M W, et al. Multi-scale generative adversarial networks image inpainting algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 159-170.
DOI |
|
[99] | ZENG Y, FU J, CHAO H, et al. Aggregated contextual transformations for high-resolution image inpainting[J]. arXiv: 2104.01431, 2021. |
[100] | ZHOU Y, BARNES C, SHECHTMAN E, et al. TransFill: reference-guided image inpainting by merging multiple color and spatial transformations[C]// Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2266-2276. |
[101] | WANG J, CHEN S, WU Z, et al. FT-TDR: frequency-guided transformer and top-down refinement network for blind face inpainting[J]. arXiv:2108.04424, 2021. |
[102] | ZHENG C, CHAM T J, CAI J. TFill: image completion via a transformer-based architecture[J]. arXiv:2104.00845, 2021. |
[103] | DONG Q, CAO C, FU Y. Incremental transformer structure enhanced image inpainting with masking positional encoding[J]. arXiv:2203.00867, 2022. |
[104] | KINGMA D P, WELLING M. Auto-encoding variational Bayes[J]. arXiv:1312.6114, 2013. |
[105] | HAN X, WU Z, HUANG W, et al. FiNet: compatible and diverse fashion image inpainting[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4480-4490. |
[106] | DUPONT E, SURESHA S. Probabilistic semantic inpainting with pixel constrained CNNs[C]// Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics, Apr 16-18, 2019: 2261-2270. |
[107] | ZHENG C X, CHAM T J, CAI J F. Pluralistic image completion[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1438-1447. |
[108] | ZHANG L, CHEN Q, HU B, et al. Text-guided neural image inpainting[C]// Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020. New York: ACM, 2020: 1302-1310. |
[109] | ZHAO L, MO Q, LIN S, et al. UCTGAN: diverse image inpainting based on unsupervised cross-space translation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5740-5749. |
[110] | PENG J, LIU D, XU S, et al. Generating diverse structure for image inpainting with hierarchical VQ-VAE[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Kuala Lumpur, Dec 18-20, 2021. Piscataway: IEEE, 2021: 10775-10784. |
[111] | LIU H, WAN Z, HUANG W, et al. PD-GAN: probabilistic diverse GAN for image inpainting[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Kuala Lumpur, Dec 18-20, 2021. Piscataway: IEEE, 2021: 9371-9381. |
[112] |
PHUTKE S S, MURALA S. Diverse receptive field based adversarial concurrent encoder network for image inpainting[J]. IEEE Signal Processing Letters, 2021, 28: 1873-1877.
DOI URL |
[113] | YU Y, ZHAN F, WU R, et al. Diverse image inpainting with bidirectional and autoregressive transformers[C]// Proceedings of the 29th ACM International Conference on Multimedia, Chengdu, Oct 20-24, 2021. New York: ACM, 2021: 69-78. |
[114] | WAN Z, ZHANG J, CHEN D, et al. High-fidelity pluralistic image completion with transformers[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Jun 19-25, 2021. Piscataway: IEEE, 2021: 4672-4681. |
[115] | ZHAO S, CUI J, SHENG Y, et al. Large scale image completion via co-modulated generative adversarial networks[J]. arXiv:2103.10428, 2021. |
[116] | LI W, LIN Z, ZHOU K, et al. MAT: mask-aware transformer for large hole image inpainting[J]. arXiv:2203. 15270, 2022. |
[117] | LIU Q, TAN Z, CHEN D, et al. Reduce information loss in transformers for pluralistic image inpainting[J]. arXiv:2205.05076, 2022. |
[118] | ISKAKOV K. Semi-parametric image inpainting[J]. arXiv:1807.02855, 2018. |
[119] | TYLEČEK R, ŠÁRA R. Spatial pattern templates for recognition of objects with regular structure[C]// LNCS 8142: Proceedings of the 35th German Conference on Pattern Recognition, Saarbrücken, Sep 3-6, 2013. Berlin, Heidelberg: Springer, 2013: 364-374. |
[120] | CIMPOI M, MAJI S, KOKKINOS I, et al. Describing textures in the wild[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 3606-3613. |
[121] | NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]// Proceedings of the 2011 NIPS Workshop on Deep Learning & Unsupervised Feature Learning, 2011. |
[122] | DOERSCH C, SINGH S, GUPTA A, et al. What makes paris look like paris?[J]. ACM Transactions on Graphics, 2012, 31(4): 101. |
[123] | CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 3213-3223. |
[124] | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Microsoft COCO: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. |
[125] |
RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
DOI URL |
[126] |
ZHOU B, LAPEDRIZA A, KHOSLA A, et al. Places: a 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(6): 1452-1464.
DOI URL |
[127] | LE V, BRANDT J, LIN Z, et al. Interactive facial feature localization[C]// LNCS 7574: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 679-692. |
[128] | LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 3730-3738. |
[129] | KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[J]. arXiv:1710.10196, 2017. |
[130] | KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Oct 27-Nov 3, 2019: 4401-4410. |
[131] | LOSSON O, MACAIRE L, YANG Y. Comparison of color demosaicing methods[M]//HAWKES P W. Advances in Imaging and Electron Physics. New York: Elsevier Science Inc., 2010: 173-265. |
[132] | HACCIUS C, HERFET T. Computer vision performance and image quality metrics: a reciprocal relation[C]// Proceedings of the 2nd International Conference on Computer Science, Information Technology and Applications, 2017: 27-37. |
[133] |
WANG Z, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84.
DOI URL |
[134] |
AVCIBAS I, SANKUR B, SAYOOD K. Statistical evaluation of image quality measures[J]. Journal of Electronic Imaging, 2002, 11(2): 206-223.
DOI URL |
[135] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
PMID |
[136] | WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]// Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, Nov 9-12, 2003. Piscataway: IEEE, 2003: 1398-1402. |
[137] | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 586-595. |
[138] | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 6626-6637. |
[139] | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2016, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 2226-2234. |
[140] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2818-2826. |
[1] | LYU Xiaoqi, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun, LI Yidong. Expert Recommendation Algorithm Combining Attention and Recurrent Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2068-2077. |
[2] | ZHANG Xiangping, LIU Jianxun. Overview of Deep Learning-Based Code Representation and Its Applications [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2011-2029. |
[3] | LI Dongmei, LUO Sisi, ZHANG Xiaoping, XU Fu. Review on Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1954-1968. |
[4] | REN Ning, FU Yan, WU Yanxia, LIANG Pengju, HAN Xi. Review of Research on Imbalance Problem in Deep Learning Applied to Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953. |
[5] | YANG Caidong, LI Chengyang, LI Zhongbo, XIE Yongqiang, SUN Fangwei, QI Jin. Review of Image Super-resolution Reconstruction Algorithms Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010. |
[6] | ZENG Fanzhi, XU Luqian, ZHOU Yan, ZHOU Yuexia, LIAO Junwei. Review of Knowledge Tracing Model for Intelligent Education [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1742-1763. |
[7] | AN Fengping, LI Xiaowei, CAO Xiang. Medical Image Classification Algorithm Based on Weight Initialization-Sliding Window CNN [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1885-1897. |
[8] | ZHANG Haocong, LI Tao, XING Lidong, PAN Fengrui. Parallel Implementation of OpenVX Feature Extraction Functions in Programmable Processing Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1583-1593. |
[9] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[10] | LIU Yi, LI Mengmeng, ZHENG Qibin, QIN Wei, REN Xiaoguang. Survey on Video Object Tracking Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515. |
[11] | ZHAO Xiaoming, YANG Yijiao, ZHANG Shiqing. Survey of Deep Learning Based Multimodal Emotion Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1479-1503. |
[12] | SUN Fangwei, LI Chengyang, XIE Yongqiang, LI Zhongbo, YANG Caidong, QI Jin. Review of Deep Learning Applied to Occluded Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1243-1259. |
[13] | LIU Yafen, ZHENG Yifeng, JIANG Lingyi, LI Guohe, ZHANG Wenjie. Survey on Pseudo-Labeling Methods in Deep Semi-supervised Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1279-1290. |
[14] | DONG Wenxuan, LIANG Hongtao, LIU Guozhu, HU Qiang, YU Xu. Review of Deep Convolution Applied to Target Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042. |
[15] | CHENG Weiyue, ZHANG Xueqin, LIN Kezheng, LI Ao. Deep Convolutional Neural Network Algorithm Fusing Global and Local Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1146-1154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/