计算机科学与探索 ›› 2013, Vol. 7 ›› Issue (4): 348-358.DOI: 10.3778/j.issn.1673-9418.1211013
吴萍萍,王丽珍+,周永恒
WU Pingping, WANG Lizhen+, ZHOU Yongheng
摘要: 空间Co-Location模式挖掘是空间数据挖掘的一个重要研究方向,正受到越来越多的关注。在实际应用中,空间特征不仅包含空间信息,还经常伴随着属性信息,这些属性信息对决策和知识发现有重要意义。然而现有的Co-Location挖掘方法只强调特征的空间信息,忽略了其属性信息。基于对属性信息的模糊化处理,定义了模糊特征和模糊Co-Location模式等概念。类似于传统空间Co-Location模式挖掘中的相关概念,定义了模糊Co-Location模式的表实例和参与度等概念。在证明模糊Co-Location模式的向下闭合性质的基础上,设计了一个基本挖掘算法。为提高算法的可伸缩性,提出了两个剪枝方法。在合成的和真实的数据集上进行了大量实验,验证了基本算法及其改进算法的效果和效率。