计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (1): 121-126.DOI: 10.3778/j.issn.1673-9418.1309008
• 人工智能与模式识别 • 上一篇
侯 越+
HOU Yue+
摘要: 在萤火虫优化算法和T-S模糊神经网络的基础上,提出了一种采用萤火虫算法优化的T-S模糊神经网络预测交通流量的算法。该算法利用萤火虫算法得到T-S模糊神经网络的最优参数配置,从而能发挥T-S模糊神经网络泛化的映射能力。将该算法应用到实测交通流中进行算法的有效性验证,并与传统的T-S模糊神经网络和遗传算法优化的T-S模糊神经网络进行比较,仿真结果表明该算法具有更高的预测准确性,从而证明了该算法在交通流量预测领域的可行性和有效性。