计算机科学与探索 ›› 2015, Vol. 9 ›› Issue (12): 1409-1419.DOI: 10.3778/j.issn.1673-9418.1505049
尹宏伟,李凡长+
YIN Hongwei, LI Fanzhang+
摘要: 在自然科学研究领域存在众多因连续变化而难以解决的问题。这些复杂问题可以通过谱方法表示为一系列离散空间上的简单问题的组合,通过求解这些简单问题获得其近似解。谱学习算法是近年来国际上机器学习领域的一个研究热点。谱学习算法建立在谱数学理论基础上,与传统的学习算法相比,一方面能保持数据内部潜在结构不变,另一方面能获得全局最优解。首先介绍了谱学习的基本理论,然后从谱聚类算法、概率模型谱学习算法、谱流形学习算法3个不同方面介绍了相关的典型算法,最后针对目前的研究现状,给出了谱学习几个有价值的研究方向。