计算机科学与探索 ›› 2016, Vol. 10 ›› Issue (6): 751-760.DOI: 10.3778/j.issn.1673-9418.1509014

• 学术研究 • 上一篇    下一篇

多维数据特征融合的用户情绪识别

陈  茜+,史殿习,杨若松   

  1. 国防科技大学 计算机学院 并行与分布处理国防科技重点实验室,长沙 410073
  • 出版日期:2016-06-01 发布日期:2016-06-07

User Emotion Recognition Based on Multidimensional Data Feature Fusion

CHEN Xi+, SHI Dianxi, YANG Ruosong   

  1. National Laboratory for Parallel and Distributed Processing, College of Computer, National University of Defense Technology, Changsha 410073, China
  • Online:2016-06-01 Published:2016-06-07

摘要: 针对目前基于智能手机的情绪识别研究中所用数据较为单一,不能全面反应用户行为模式,进而不能真实反应用户情绪这一问题展开研究,基于智能手机从多个维度全面收集反应用户日常行为的细粒度感知数据,采用多维数据特征融合方法,利用支持向量机(support vector machine,SVM)、随机森林(random forest)等6种分类方法,基于离散情绪模型和环状情绪模型两种情绪分类模型,对12名志愿者的混合数据和个人数据分别进行情绪识别,并进行了对比实验。实验结果表明,该全面反应用户行为的多维数据特征融合方法能够很好地对用户的情绪进行识别,其中使用个人数据进行情绪识别的准确率最高可达到79.78%,而且环状情感模型分类结果明显优于离散分类模型。

关键词: 情绪识别, 情绪模型, 机器学习, 智能手机

Abstract: This paper studies the problem how to recognize the user emotion based on smartphone data more really. With single data used in the previous research, it cannot make a comprehensive response of user behavior patterns. So this paper collects fine-grained sensing data which can reflect user daily behavior fully from multiple dimensions based on smartphone, and then uses multidimensional data feature fusion method and six classification methods such as support vector machine (SVM) and random forest. Finally, this paper carries out contrast experiments with twelve volunteers’ hybrid data and personal data respectively to recognize user emotion based on discrete emotion model and circumplex emotion model. The results show that the multidimensional data feature fusion method can reflect user behavior comprehensively and presents high accuracy. After personal data training, the accuracy rate of emotion recognition can reach 79.78%. In the experiments of different emotion models, the circumplex emotion model is better than discrete emotion model.

Key words: emotion recognition, emotion model, machine learning, smartphone