计算机科学与探索 ›› 2016, Vol. 10 ›› Issue (9): 1290-1298.DOI: 10.3778/j.issn.1673-9418.1509077
李竞飞,商振国,张 鹏+,宋大为
LI Jingfei, SHANG Zhenguo, ZHANG Peng+, SONG Dawei
摘要: 传统的查询推荐算法通过挖掘查询日志为用户推荐查询词。通常现存模型只考虑原始查询词与推荐词之间的关系(例如语义相似性或相关性等),没有考虑用户在搜索过程中的满意度情况。针对用户在搜索过程中表现出的不同满意度状态,提出了一个查询推荐基本假设,并通过开展在线用户问卷调查,验证了这一假设。基于相应的假设,提出了一种基于用户搜索满意度状态的自适应查询推荐模型,该模型可以为用户智能推荐不同种类的查询词。当用户对搜索结果满意时,模型将为用户提供更加新颖的推荐词;当用户对搜索结果不满意时,模型将为用户提供一些增强信息表示能力的查询词。大规模日志实验表明,提出的推荐模型显著优于传统的查询流图模型,证明了所提模型的有效性。