计算机科学与探索 ›› 2016, Vol. 10 ›› Issue (7): 1010-1020.DOI: 10.3778/j.issn.1673-9418.1510079
刘 行,陈 莹+
LIU Xing, CHEN Ying+
摘要: 针对视觉跟踪在复杂场景中跟踪精度较低和鲁棒性较差的问题,在贝叶斯框架下提出了一种自适应观测权重的目标跟踪算法。通过视觉跟踪中的线性表示模型构建出一种加权观测模型;提出一种基于迭代加权的模型优化算法,利用在线更新的自适应权重矩阵消除观测离群值对跟踪有效性的影响;最后,采用有效的似然评估函数实现对目标准确、鲁棒的跟踪。实验结果表明,该算法在跟踪精度和鲁棒性方面都优于现有的一些跟踪算法。