计算机科学与探索 ›› 2017, Vol. 11 ›› Issue (3): 478-490.DOI: 10.3778/j.issn.1673-9418.1601003
肖辉辉1,2,万常选1+,段艳明2,喻 聪1
XIAO Huihui1,2, WAN Changxuan1+, DUAN Yanming2, YU Cong1
摘要: 花朵授粉算法(flower pollination algorithm,FPA)是最近提出的一种新型群智能优化算法,由于其较好地解决了全局搜索和局部搜索的平衡性问题,且具有参数少,易实现等特点,已得到广泛应用和研究,但现有研究对其参数的研究较少,同时该算法也存在演化后期收敛速度慢且易陷入局部极小等缺陷,使其应用范围受到制约。为了提升FPA算法的整体性能,对其控制步长的缩放因子的取值进行了修正;提出了把高斯变异和Powell法融入到花朵授粉算法中的混合算法GMPFPA(flower pollination algorithm combination with Gauss mutation and Powell search method)。改进算法首先利用高斯变异对全局搜索进行扰动,增强种群的多样性,提高全局探测能力,然后引入局部寻优能力强大的Powell法提升其局部开发能力。通过12个高维经典测试函数对比实验,验证了改进算法的有效性和优越性。