计算机科学与探索 ›› 2018, Vol. 12 ›› Issue (1): 153-162.DOI: 10.3778/j.issn.1673-9418.1610033
杨 军1+,张 瑶1,黄 亮2
YANG Jun1+, ZHANG Yao1, HUANG Liang2
摘要: 针对整体与部分3D模型间的配准问题,提出了一种基于自适应最优阈值的迭代最近点(iterative closest point,ICP)算法。首先使用主成分分析法将模型进行初始配准,并使用三维缩放变换调整模型的大小;然后采用KD-tree进行最近邻搜索以提高对应点的查找速度,计算在不同的阈值下对两模型执行ICP算法的配准误差,并记录误差最小时所对应的阈值Kbest;再以Kbest为阈值重新对两模型执行ICP算法,将目标模型和源模型配准;最后执行三维目标重合度检测算法,根据重合度再进行最后的反转调整。实验结果表明,改进的ICP算法既能配准整体与部分模型,也适用于两个完整模型间的配准,提高了ICP算法的精确度。