计算机科学与探索 ›› 2017, Vol. 11 ›› Issue (6): 863-874.DOI: 10.3778/j.issn.1673-9418.1611079
李 琨1,2+,贾海鹏1,曹 婷1,张云泉1
LI Kun1,2+, JIA Haipeng1, CAO Ting1, ZHANG Yunquan1
摘要: 快速傅里叶变换(fast Fourier transform,FFT)是用于计算离散傅里叶变换(discrete Fourier transform,DFT)或其逆运算的快速算法,在工程、科学和数学领域的应用非常广泛,例如信号分解、数字滤波、图像处理等。因此,在实际应用中对FFT算法进行细粒度优化是非常重要的。研究了FFT算法常用的分解策略以及FFT算法在大规模集群系统上的并行实现,并提出了相关的优化策略。在此基础上,对多种FFT算法在不同平台上进行了性能评估,并分析了各算法的实现、优缺点及其在大规模计算时的可扩展性。实验结果表明,相关研究有助于对现有的FFT算法进行进一步的优化,以及指导如何在大规模CPU+GPU的异构系统上根据不同需求选择实现性能更优的FFT算法。