计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (4): 669-679.DOI: 10.3778/j.issn.1673-9418.1903041
程天艺,王亚刚,龙旭,潘晓英
CHENG Tianyi, WANG Yagang, LONG Xu, PAN Xiaoying
摘要:
针对原始病理图像经软件提取形态学特征后存在高维度,以及医学领域上样本的少量性问题,提出ReliefF-HEPSO头颈癌病理图像特征选择算法。该算法构建了多层次降维框架,首先根据特征和类别的相关性,利用ReliefF算法确定不同的特征权重,实现初步降维。其次利用进化神经策略(ENS)丰富二进制粒子群算法(BPSO)的种群的多样性,提出混合二进制进化粒子群算法(HEPSO)对候选特征子集完成最佳特征子集的自动寻找。与7种特征选择算法的实验对比结果证明,该算法能更有效筛选出高相关性的病理图像形态学特征,实现快速降维,以较少特征获得较高分类性能。