计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (1): 108-116.DOI: 10.3778/j.issn.1673-9418.1903054
尹儒,门昌骞,王文剑
YIN Ru, MEN Changqian, WANG Wenjian
摘要: 随机森林(RF)具有抗噪能力强,预测准确率高,能够处理高维数据等优点,因此在机器学习领域得到了广泛的应用。模型决策树(MDT)是一种加速的决策树算法,虽然能够提高决策树算法的训练效率,但是随着非纯伪叶结点规模的增大,模型决策树的精度也在下降。针对上述问题,提出了一种模型决策森林算法(MDF)以提高模型决策树的分类精度。MDF算法将MDT作为基分类器,利用随机森林的思想,生成多棵模型决策树。算法首先通过旋转矩阵得到不同的样本子集,然后在这些样本子集上训练出多棵不同的模型决策树,再将这些树通过投票的方式进行集成,最后根据得到的模型决策森林给出分类结果。在标准数据集上的实验结果表明,提出的模型决策森林在分类精度上明显优于模型决策树算法,并且MDF在树的数量较少时也能取到不错的精度,避免了因树的数量增加时间复杂度增高的问题。