计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (8): 1380-1388.DOI: 10.3778/j.issn.1673-9418.1905044

• 图形图像 • 上一篇    下一篇

结合FC-DenseNet和WGAN的图像去雾算法

孙斌,雎青青,桑庆兵   

  1. 江南大学 物联网工程学院, 江苏 无锡 214122
  • 出版日期:2020-08-01 发布日期:2020-08-07

Image Dehazing Algorithm Based on FC-DenseNet and WGAN

SUN Bin, JU Qingqing, SANG Qingbing   

  1. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2020-08-01 Published:2020-08-07

摘要:

针对现有图像去雾算法严重依赖中间量准确估计的问题,提出了一种基于Wasserstein生成对抗网络(WGAN)的端到端图像去雾模型。首先,使用全卷积密集块网络(FC-DenseNet)充分学习图像中雾的特征;其次,采用残差学习思想直接从退化图像中学习到清晰图像的特征,实现端到端的去雾;最后,使用均方误差和感知结构误差函数作为模型的损失函数,以确保生成图像结构和内容的相似度,并使用WGAN对生成结果细致优化,生成清晰逼真的无雾图像。实验结果表明,在合成雾天数据集上,该算法在结构相似度上比其他对比算法提高了4%;在自然雾天图像上,由该算法恢复的图像具有较高的清晰度和对比度,在主观评价上优于其他对比算法。

关键词: 图像去雾, Wasserstein生成对抗网络(WGAN), 全卷积密集块网络(FC-DenseNet), 残差学习

Abstract:

The existing image dehazing algorithms rely heavily on the accurate estimation of the intermediate variables. This paper proposes an end-to-end image dehazing model based on Wasserstein generative adversarial networks(WGAN). Firstly, the fully convolutional DenseNets (FC-DenseNet) is used to fully learn the features of the hazy in image. Secondly, the residual learning concept is used to directly learn the features of the clear image from the degraded image, and realize end-to-end image dehazing. Finally, the mean square error and perceptual structural error function are used as the loss function of the model to ensure the image structure and content information, and WGAN is used to finely optimize the generated results to produce clear and realistic clear images. Experimental results show that the proposed algorithm improves the structural similarity by 4% compared with other comparison algorithms on the synthetic hazy dataset, and on the natural hazy image, the image restored by the algorithm has higher definition and contrast, and is superior to other comparison algorithms on the subjective evaluation.

Key words: image dehazing, Wasserstein generative adversarial networks (WGAN), fully convolutional DenseNet(FC-DenseNet), residual learning