[1] Tan R T. Visibility in bad weather from a single image[C]// Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Jun 23-28, 2008. Washington: IEEE Computer Society, 2008: 1-8.
[2] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
[3] Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533.
[4] Cai B L, Xu X M, Jia K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
[5] Ren W Q, Liu S, Zhang H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//LNCS 9906: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10, 2016. Berlin, Heidelberg: Sprin-ger, 2016: 154-169.
[6] Li B Y, Peng X L, Wang Z Y, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of the 2017 IEEE Inter-national Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4770-4778.
[7] McCartney E J. Optics of the atmosphere: scattering by mole-cules and particles[M]. New York: John Wiley & Sons, Inc., 1976.
[8] Galdran A, Vazquezcorral J, Pardo D, et al. Fusion-based varia-tional image dehazing[J]. IEEE Signal Processing Letters, 2017, 24(2): 151-155.
[9] Zhang D, Wu P. Fast single image defogging algorithm[J]. Computer Engineering and Applications, 2019, 55(10): 213-217.张弟, 吴萍. 单幅图像快速去雾算法[J]. 计算机工程与应用, 2019, 55(10): 213-217.
[10] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[C]//Pro-ceedings of the 2017 International Conference on Machine Learning, Sydney, Aug 6-11, 2017. New York: ACM, 2017: 214-223.
[11] Jégou S, Drozdzal M, Vázquez D, et al. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1175-1183.
[12] Goodfellow I J, Pouget A J, Mirza M, et al. Generative adver-sarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
[13] Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 105-114.
[14] Isola P, Zhu J Y, Zhou T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5967-5976.
[15] Kupyn O, Budzan V, Mykhailych M, et al. DeblurGAN: blind motion deblurring using conditional adversarial networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8183-8192.
[16] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[17] Ronneberger O, Fischer P, Brox T. U-Net: convolutional net-works for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Mu-nich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[18] Huang G, Liu Z, Laurens V D M, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4700-4708.
[19] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[20] Mirza M, Osindero S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[21] Ding Y, Huang L, Wang C D. Link prediction based on generative adversarial networks[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 554-562.丁玥, 黄玲, 王昌栋. 基于生成式对抗网络的链路预测方法[J]. 计算机科学与探索, 2019, 13(4): 554-562.
[22] Johnson J, Alahi A, Li F F. Perceptual losses for real-time style transfer and super-resolution[C]//LNCS 9906: Proceed-ings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 694-711.
[23] Ju Q Q, Li C F, Sang Q B. Single image dehazing by using improved multi-scale convolutional neural network[J]. Com-puter Engineering and Applications, 2019, 55(10): 179-185.雎青青, 李朝锋, 桑庆兵. 改进多尺度卷积神经网络的单幅图像去雾方法[J]. 计算机工程与应用, 2019, 55(10): 179-185.
[24] Silberman N, Hoiem D, Kohli P, et al. Indoor segmentation and support inference from RGBD images[C]//LNCS 7576: Proceedings of the 12th European Conference on Computer Vision, Firenze, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 746-760.
[25] Wang Y J, Li J H, Lu Y, et al. Image quality evaluation based on image weighted separating block peak signal to noise ratio[C]//Proceedings of the 2003 International Conference on Neural Networks and Signal Processing, Nanjing, Dec 14-17, 2003. Piscataway: IEEE, 2003: 994-997.
[26] Wang Z, Bovik A C, Sheikh H R, et al. Image quality assess-ment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. |