[1] Jolliffe I T, Cadima J. Principal component analysis: a review and recent developments[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150202.
[2] Derksen H. On the nuclear norm and the singular value decomposition of tensors[J]. Foundations of Computation Mathematics, 2016, 16(3): 779-811.
[3] Hernando A, Bobadilla J, Ortega F. A non-negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model[J]. Knowledge- Based Systems, 2016, 97: 188-202.
[4] Kwak N. Principal component analysis based on L1-norm maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(9): 1672-1680.
[5] Lin Z, Chen M, Ma Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv:1009.5055, 2010.
[6] Chandrasekaran V, Sanghavi S, Parrilo P A, et al. Sparse and low-rank matrix decompositions[J]. IFAC Proceedings Volumes, 2009, 42(10): 1493-1498.
[7] Mu Y D, Dong J, Yuan X T, et al. Accelerated low-rank visual recovery by random projection[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Jun 20-25, 2011. Washington: IEEE Computer Society, 2011: 2609-2616.
[8] Zhou T Y, Tao D C. GoDec: randomized lowrank & sparse matrix decomposition in noisy case[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omni Press, 2011: 33-40.
[9] Candès E J, Li X D, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 11.
[10] Shi J R, Zheng X Y, Yang W. Survey on probabilistic models of low-rank matrix factorizations[J]. Entropy, 2017, 19(8): 424.
[11] McLachlan G, Krishnan T. The EM algorithm and extensions[M]. Hoboken: John Wiley & Sons, 2007.
[12] Bishop C M. Pattern recognition and machine learning[M]. Berlin, Heidelberg: Springer, 2006.
[13] Tzikas D G, Likas A C, Galatsanos N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131-146.
[14] Mantz A B. A Gibbs sampler for multivariate linear regression[J]. Monthly Notices of the Royal Astronomical Society, 2016, 457(2): 1279-1288.
[15] Martino L, Read J, Luengo D. Independent doubly adaptive rejection Metropolis sampling within Gibbs sampling[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3123- 3138.
[16] Bernardo J M, Smith A F M. Bayesian theory[M]. Hoboken: John Wiley & Sons, 2009.
[17] Beal M J. Variational algorithms for approximate Bayesian inference[M]. London: University of London, 2003.
[18] Blei D M, Jordan M I. Variational inference for Dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121-143.
[19] Bernardo J M, Bayarri M J, Berger J O, et al. The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures[J]. Bayesian Statistics, 2003, 7: 453-464.
[20] Chen Z, Babacan S D, Molina R, et al. Variational Bayesian methods for multimedia problems[J]. IEEE Transactions on Multimedia, 2014, 16(4): 1000-1017.
[21] Gao J B. Robust L1 principal component analysis and its Bayesian variational inference[J]. Neural Computation, 2008, 20(2): 555-572.
[22] Luttinen J, Ilin A, Karhunen J. Bayesian robust PCA of incomplete data[J]. Neural Processing Letters, 2012, 36(2): 189-202.
[23] Mnih A, Salakhutdinov R. Probabilistic matrix factorization[C]//Proceedings of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, Dec 3-5, 2007. Red Hook: Curran Associates, 2008: 1257-1264.
[24]Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jul 5-9, 2008. New York: ACM, 2008: 880-887.
[25] Lakshminarayanan B, Bouchard G, Archambeau C. Robust Bayesian matrix factorisation[C]//Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, Apr 11-13, 2011: 425-433.
[26] Wang N Y, Yeung D Y. Bayesian robust matrix factorization for image and video processing[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 1785-1792.
[27] Yang Z J, Zhang F L, Zhang H, et al. Three-decomposition model and algorithm and its application in image restoration[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(12): 1940-1949. 杨章静, 张凡龙, 张辉, 等. 三分解模型与算法及其在图像恢复中的应用[J]. 计算机科学与探索, 2018, 12(12): 1940-1949.
[28] Eltoft T, Kim T, Lee T W. On the multivariate Laplace distribution[J]. IEEE Signal Processing Letters, 2006, 13(5): 300-303.
[29] Salojärvi J, Puolamäki K, Kaski S. Expectation maximization algorithms for conditional likelihoods[C]//Proceedings of the 22nd International Conference on Machine Lear-ning, Bonn, Aug 7-11, 2005. New York: ACM, 2005: 752-759.
[30] Ding X H, He L H, Carin L. Bayesian robust principal component analysis[J]. IEEE Transactions on Image Processing, 2011, 20(12): 3419-3430.
[31] Shi J R, Zhang A Y. Review on probabilistic tensor decompositions[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2018, 34(4): 70-79. 史加荣, 张安银. 概率张量分解综述[J]. 陕西理工大学学报(自然科学版), 2018, 34(4): 70-79.
[32] Hayashi K, Takenouchi T, Shibata T, et al. Exponential family tensor factorization for missing-values prediction and anomaly detection[C]//Proceedings of the 10th International Conference on Data Mining, Sydney, Dec 14-17, 2010. Washington: IEEE Computer Society, 2010: 216-225.
[33] Wang N Y, Yao T S, Wang J D, et al. A probabilistic approach to robust matrix factorization[C]//LNCS 7578: Proceedings of the 12th European Conference on Computer Vision, Florence, Oct 7-13, 2012. Berlin, Heidelberg: Springer, 2012: 126-139.
[34] Yong H W, Meng D Y, Zuo W M, et al. Robust online matrix factorization for dynamic background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1726-1740. |