[1] Kennedy J, Eberhart R. Particle swarm optimization[C]//Pro-ceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[2] Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]//Proceedings of the 1995 International Symposium on Micro Machine and Human Science, Nagoya, Oct 4-6, 1995. Piscataway: IEEE, 1995: 39-43.
[3] Zhao J, Sun H, Deng C Z, et al. Particle swarm optimization based adaptive image denoising in Shearlet domain[J]. Journal of Chinese Computer Systems, 2011, 32(6): 1147-1150.赵嘉, 孙辉, 邓承志, 等. 基于粒子群优化的Shearlet自适应图像去噪[J]. 小型微型计算机系统, 2011, 32(6): 1147-1150.
[4] Xu M, Zhang L, Du B, et al. A mutation operator accelerated quantum-behaved particle swarm optimization algorithm for hyperspectral endmember extraction[J]. Remote Sensing, 2017, 9(3): 197-184.
[5] Chou J S, Pham A D. Nature-inspired metaheuristic optim-ization in least squares support vector regression for obtaining bridge scour information[J]. Information Sciences, 2017, 399: 64-80.
[6] Sun H, Shi X L, Zhao J, et al. Hybrid algorithm of particle swarm optimization and artificial bee colony with its application in wireless sensor networks[J]. Sensor Letters, 2014, 12(2): 392-397.
[7] Sun H, Li J, Li W L, et al. A hybrid particle swarm optim-ization for wireless sensor network coverage problem[J]. Sensor Letters, 2012, 10(8): 1744-1750.
[8] Delice Y, Aydo?an E K, ?zcan U, et al. A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing[J]. Journal of Intelligent Manuf-acturing, 2017, 28(1): 23-36.
[9] Yuan L, Ge H W, Jiang D Y. Partical swarm optimization algorithm with adaptive filter based on health degree[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 332-340.袁罗, 葛洪伟, 姜道银. 基于健康度的自适应过滤粒子群算法[J]. 计算机科学与探索, 2018, 12(2): 332-340.
[10] Jiang L, Ye R Z, Liang C Y, et al. Improved second-order oscillatory particle swarm optimization[J]. Computer Engin-eering and Applications, 2019, 55(9): 130-138.蒋丽, 叶润舟, 梁昌勇, 等. 改进的二阶振荡粒子群算法[J]. 计算机工程与应用, 2019, 55(9): 130-138.
[11] Zhang X, Zou D X, Xiao P, et al. Self-adjusted simplified particle swarm optimization algorithm and its application[J]. Computer Engineering and Applications, 2019, 55(8): 250-263.张鑫, 邹德旋, 肖鹏, 等. 自适应简化粒子群优化算法及其应用[J]. 计算机工程与应用, 2019, 55(8): 250-263.
[12] Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
[13] Zhao J, Lv L, Wang H, et al. Particle swarm optimization based on vector Gaussian learning[J]. KSII Transactions on Internet and Information Systems, 2017, 11(4): 2038-2057.
[14] Hakli H, U?uz H. A novel particle swarm optimization algorithm with Levy flight[J].Applied Soft Computing, 2014, 23: 333-345.
[15] Li S F, Cheng C Y. Particle swarm optimization with fitness adjustment parameters[J]. Computers & Industrial Engineering, 2017, 113: 831-841.
[16] Lin Z, Zhang Q. An effective hybrid particle swarm opt-imization with Gaussian mutation[J]. Journal of Algorithms & Computational Technology, 2017, 11(3): 271-280.
[17] Yan B L, Zhao Z, Zhou Y C, et al. A particle swarm optimization algorithm with random learning mechanism and Levy flight for optimization of atomic clusters[J]. Computer Physics Communications, 2017, 219: 79-86.
[18] Chen K, Zhou F Y, Yin L, et al. A hybrid particle swarm optimizer with sine cosine acceleration coefficients[J]. Infor-mation Sciences, 2018, 422: 218-241.
[19] Anderson C. The long tail[M]. Beijing: CITIC Press, 2006: 10-12.安德森. 长尾理论[M]. 乔江涛, 译. 北京: 中信出版社, 2006: 10-12.
[20] Trelea I C. The particle swarm optimization algorithm: convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317-325.
[21] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255.
[22] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolu-tionary Computation, 2006, 10(3): 281-295.
[23] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer[C]//Proceedings of the 2005 IEEE Swarm Intelligence Symposium, Pasadena, Jun 8-10, 2005. Pisca-taway: IEEE, 2005: 124-129.
[24] Jensi R, Jiji G W. An enhanced particle swarm optimization with Levy flight for global optimization[J]. Applied Soft Computing, 2016, 43: 248-261.
[25] Ouyang H, Gao L, Li S, et al. Improved global-best-guided particle swarm optimization with learning operation for global optimization problems[J]. Applied Soft Computing, 2017, 52: 987-1008.
[26] Liu Z G, Ji X H, Liu Y X. Hybrid non-parametric particle swarm optimization and its stability analysis[J]. Expert Systems with Applications, 2018, 92: 256-275.
[27] Sun H, Xie H H, Zhao J. Global optical guided artificial bee colony algorithm based on sinusoidal selection probability model[J]. Journal of Nanchang Institute of Technology, 2018, 37(6): 84-90.孙辉, 谢海华, 赵嘉. 正弦选择概率模型的全局最优引导人工蜂群算法[J]. 南昌工程学院学报, 2018, 37(6):84-90.
[28] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
[29] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.
[30] Zhu G P, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
[31] Karaboga D, Gorkemli B. A quick artificial bee colony (qABC) algorithm and its performance on optimization problems[J]. Applied Soft Computing, 2014, 23: 227-238.
[32] Banharnsakun A, Achalakul T, Sirinaovakul B. The best-so-far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(2): 2888-2901.
[33] Kiran M S, Findik O. A directed artificial bee colony alg-orithm[J]. Applied Soft Computing, 2015, 26: 454-462.
[34] Gao W, Liu S. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39(3): 687-697.
[35] Cui L Z, Zhang K, Li G H, et al. Modified Gbest-guided artificial bee colony algorithm with new probability model [J]. Soft Computing, 2018, 22(7): 2217-2243.
[36] Chen Q, Liu B, Zhang Q, et al. Problem definition and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive num-erical optimization[R]. Zhengzhou: Zhengzhou University, 2014.
[37] Yu S H, Zhu S L, Ma Y, et al. A variable step size firefly algorithm for numerical optimization[J]. Applied Mathematics and Computation, 2015, 263: 214-220.
[38] Yu S H, Su S B, Lu Q P, et al. A novel wise step strategy for firefly algorithm[J]. International Journal of Computer Math-ematics, 2014, 91(12): 2507-2513.
[39] Kora P, Krishna K S R. Hybrid firefly and particle swarm optimization algorithm for the detection of bundle branch block[J]. International Journal of the Cardiovascular Academy, 2016, 2(1): 44-48. |