[1] Luo W, Xing J, Milan A, et al. Multiple object tracking: a literature review[J]. arXiv:1409.7618, 2017.
[2] Kim C, Li F X, Ciptadi A, et al. Multiple hypothesis tracking revisited[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 4696-4704.
[3] Ba H X, Cao L, He X Y, et al. Modified joint probabilistic data association with classification-aided for multitarget tracking[J]. Journal of Systems Engineering and Electronics, 2008, 19(3): 434-439.
[4] Mahler R P S. Representing rules as random sets, II: iterated rules[J]. International Journal of Intelligent Systems, 2015, 11(8): 583-610.
[5] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
[6] Mahler R P S. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
[7] Vo B T, Vo B N, Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567.
[8] Hoseinnezhad R, Vo B N, Vo B T, et al. Visual tracking of numerous targets via multi-Bernoulli filtering of image data[J]. Pattern Recognition, 2012, 45(10): 3625-3635.
[9] Vo B N, Vo B T, Pham N T, et al. Joint detection and estima-tion of multiple objects from image observations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 5129-5141.
[10] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423.
[11] Vo B T, Vo B N, Hoseinnezhad R, et al. Robust multi-Bernoulli filtering[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 399-409.
[12] Saeidi M, Ahmadi A. Deep learning based on CNN for pedes-trian detection: an overview and analysis[C]//Proceedings of the 9th International Symposium on Telecommunications, Tehran, Dec 17-19, 2018. Piscataway: IEEE, 2018: 108-112.
[13] Fu Z, Naqvi S M, Chambers J A. Collaborative detector fusion of data-driven PHD filter for online multiple human tracking[C]//Proceedings of the 21st International Conference on Information Fusion, Cambridge, Jul 10-13, 2018. Pisca-taway: IEEE, 2018: 1976-1981.
[14] Breitenstein M D, Reichlin F, Leibe B, et al. Online multi-person tracking-by-detection from a single, uncalibrated camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1820-1833.
[15] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 51(4): 1224-1245.
[16] Hoseinnezhad R, Vo B N, Vo B T. Visual tracking in back-ground subtracted image sequences via multi-Bernoulli filter-ing[J]. IEEE Transactions on Signal Processing, 2013, 61(2): 392-397.
[17] Rathnayake T, Gostar A K, Hoseinnezhad R, et al. Labeled multi-Bernoulli track-before-detect for multi-target tracking in video[C]//Proceedings of the 18th International Confer-ence on Information Fusion, Washington, Jul 6-9, 2015. Pis-cataway: IEEE, 2015: 1353-1358.
[18] Kim D Y. Online multi-object tracking via labeled random finite set with appearance learning[C]//Proceedings of the 2017 International Conference on Control, Automation and Information Sciences, Chiang Mai, Oct 31-Nov 1, 2017. Piscataway: IEEE, 2017: 181-186.
[19] Ristic B, Clark D, Vo B N, et al. Adaptive target birth inten-sity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668.
[20] Si W J, Wang L W, Qu Z Y. A measurement-driven adaptive probability hypothesis density filter for multitarget tracking[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1689-1698.
[21] Redmon J, Farhadi A. YOLOv3: an incremental improve-ment[J]. arXiv:1804.02767, 2018.
[22] Redmon J, Divvala S, Girshick R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wash-ington: IEEE Computer Society, 2016: 779-788.
[23] Redmon J, Farhadi A. YOLO900: better, faster, stronger[C]// Proceedings of the 2017 IEEE Computer Society Confer-ence on Computer Vision and Pattern Recognition, Hono-lulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525.
[24] Liu W, Anguelov D, Erhan D, et al. SSD: single shot multi-box detector[C]//LNCS 9905: Proceedings of the 14th Eur-opean Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 21-37.
[25] Zhang K H, Liu Q S, Wu Y, et al. Robust visual tracking via convolutional networks without training[J]. IEEE Transac-tions on Image Processing, 2015, 25(4): 1779-1792.
[26] Hartigan J A, Wong M A. Algorithm AS 136: a [K-means]clustering algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1): 100-108.
[27] Wu Y, Lim J, Yang M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834-1848.
[28] Dataset of European commission funded context aware vision using image-based active recognition[EB/OL]. (2019-04-25) [2019-06-04]. http://homepages.inf.ed.ac.uk/rbf/CAVIARD-ATA.
[29] Yang J L, Tang Y, Zhang G N. Visual multiobject tracking using convolution feature and multibernoulli filter[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1945-1957.杨金龙, 汤玉, 张光南. 卷积特征多伯努利视频多目标跟踪算法[J]. 计算机科学与探索, 2019, 13(11): 1945-1957.
[30] Bochinski E, Eiselein V, Sikora T. High-speed tracking-by-detection without using image information[C]//Proceedings of the 14th IEEE International Conference on Advanced Video & Signal Based Surveillance, Lecce, Aug 29-Sep 1, 2017. Washington: IEEE Computer Society, 2017: 1-6.
[31] Ristic B, Vo B N, Clark D, et al. A metric for performance evaluation of multitarget tracking algorithms[J]. IEEE Tran-sactions on Signal Processing, 2011, 59(7): 3452-3457.
[32] Bernardin K, Stiefelhagen R. Evaluating multiple object track-ing performance: the CLEAR MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 1: 1-10. |