[1] Klein G, Kim Y, Deng Y, et al. OpenNMT: open-source toolkit for neural machine translation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Lingui-stics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 67-72.
[2] Nallapati R, Zhou B, dos Santos C, et al. Abstractive text sum-marization using sequence-to-sequence RNNs and beyond[C]//Proceedings of the 20th CoNLL Conference on Computa-tional Natural Language Learning, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 280-290.
[3] Venugopalan S, Rohrbach M, Donahue J, et al. Sequence to sequence-video to text[C]//Proceedings of the 14th ICCV IEEE International Conference on Computer Vision, Santiago, Dec 13-16, 2015. Piscataway: IEEE, 2015: 4534-4542.
[4] Miao Y, Gowayyed M, Metze F. EESEN: end-to-end speech recognition using deep RNN models and WFST-based decod-ing[C]//Proceedings of the 2015 ASRU IEEE Workshop on Automatic Speech Recognition and Understanding, Arizona, Dec 13-17, 2015. Piscataway: IEEE, 2015: 167-174.
[5] Meng F, Lu Z, Li H, et al. Interactive attention for neural ma-chine translation[C]//Proceedings of the 26th COLING Interna-tional Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. New York: ACM, 2016: 2174-2185.
[6] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[7] Rush A M, Chopra S, Weston J. A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 EMNLP Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Strouds-burg: ACL, 2015: 379-389.
[8] Gu J, Lu Z, Li H, et al. Incorporating copying mechanism in sequence-to-sequence learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Lingui-stics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 1631-1640.
[9] See A, Liu P J, Manning C D. Get to the point: summariza-tion with pointer-generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 1073-1083.
[10] Ling J, Rush A. Coarse-to-fine attention models for docu-ment summarization[C]//Proceedings of the 2017 Workshop on New Frontiers in Summarization, Copenhagen, 2017. Stroudsburg: ACL, 2017: 33-42.
[11] Belinkov Y, Durrani N, Dalvi F, et al. What do neural machine translation models learn about morphology?[C]//Proceedings of the 55th Annual Meeting of the Association for Computa-tional Linguistics, Vancouver, Jul 30-Aug 4, 2017. Strouds-burg: ACL, 2017: 861-872.
[12] Ren P, Chen Z, Ren Z, et al. Leveraging contextual sentence relations for extractive summarization using a neural attention model[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Aug 7-11, 2017. New York: ACM, 2017: 95-104.
[13] Wan X, Yang J. Improved affinity graph based multi-docu-ment summarization[C]//Proceedings of the Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, New York, Jun 4-9, 2006. Stroudsburg: ACL, 2006: 181-184.
[14] McDonald R T. A study of global inference algorithms in multi-document summarization[C]//LNCS 4425: Proceedings of the 29th European Conference on IR Research Advances in Information Retrieval, Rome, Apr 2-5, 2007. Berlin, Heidelberg: Springer, 2007: 557-564.
[15] Nallapati R, Zhai F, Zhou B. SummaRuNNer: a recurrent neural network based sequence model for extractive sum-marization of documents[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, California, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3075-3081.
[16] Zhang X, Lapata M, Wei F, et al. Neural latent extractive document summarization[C]//Proceedings of the 2018 Con-ference on Empirical Methods in Natural Language Process-ing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 779-784.
[17] Jadhav A, Rajan V. Extractive summarization with swap-net: sentences and words from alternating pointer networks[C]//Proceedings of the 56th Annual Meeting of the Associa-tion for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 142-151.
[18] Zhou Q, Yang N, Wei F, et al. Neural document summariza-tion by jointly learning to score and select sentences[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 654-663.
[19] Wang H, Wang X, Xiong W, et al. Self-supervised learning for contextualized extractive summarization[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 654-663.
[20] Zheng H, Lapata M. Sentence centrality revisited for unsuper-vised summarization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 6236-6247.
[21] Chopra S, Auli M, Rush A M. Abstractive sentence summariza-tion with attentive recurrent neural networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 93-98.
[22] Zhou Q, Yang N, Wei F, et al. Selective encoding for abstrac-tive sentence summarization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguis-tics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 1095-1104.
[23] Zeng W, Luo W, Fidler S, et al. Efficient summarization with read-again and copy mechanism[J]. arXiv:1611.03382, 2016.
[24] Lin J, Xu S U N, Ma S, et al. Global encoding for abstractive summarization[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 163-169.
[25] Xia Y, Tian F, Wu L, et al. Deliberation networks: sequence generation beyond one-pass decoding[C]//Proceedings of the 31st NeurIPS Advances in Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Cambridge: MIT Press, 2017: 1784-1794.
[26] Luong T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Langu-age Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1412-1421.
[27] Garg S, Peitz S, Nallasamy U, et al. Jointly learning to align and translate with transformer models[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Langu-age Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4443-4452.
[28] Xu K, Ba J L, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proceed-ings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015. Stroudsburg: ACL, 2015: 2048-2057.
[29] Paulus R, Xiong C, Socher R. A deep reinforced model for abstractive summarization[J]. arXiv:1705.04304, 2017.
[30] Chen H, Huang S, Chiang D, et al. Combining character and word information in neural machine translation using a multi-level attention[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-putational Linguistics: Human Language Technologies, New Orleans, Jun 3-7, 2018. Stroudsburg: ACL, 2018: 1284-1293.
[31] Li C, Xu W, Li S, et al. Guiding generation for abstractive text summarization based on key information guide network[C]//Proceedings of the 2018 Conference of the North Ameri-can Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 3-7, 2018. Stroudsburg: ACL, 2018: 55-60.
[32] Alemi A A, Fischer I, Dillon J V, et al. Deep variational information bottleneck[J]. arXiv:1612.00410, 2016.
[33] Tishby N, Pereira F C, Bialek W. The information bottleneck method[J]. arXiv:physics/0004057, 2000.
[34] Lin C Y. ROUGE: a package for automatic evaluation of summaries[C]//Proceedings of the Workshop on Text Sum-marization Branches Out, Barcelona, Jul 21-26, 2004. Strouds-burg: ACL, 2004: 74-81.
[35] Li J, Monroe W, Jurafsky D. A simple, fast diverse decoding algorithm for neural generation[J]. arXiv:1611.08562, 2016.
[36] Gehring J, Auli M, Grangier D, et al. Convolutional sequence to sequence learning[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017.New York: ACM, 2017: 1243-1252. |