[1] Nabel E G, Braunwald E. A tale of coronary artery disease and myocardial infarction[J]. New England Journal of Medi-cine, 2012, 366(1): 54-63.
[2] Shakeri M, Tsogkas S, Ferrante E, et al. Sub-cortical brain structure segmentation using F-CNN??s[C]//Proceedings of the 13th IEEE International Symposium on Biomedical Imaging, Prague, Apr 13-16, 2016. Piscataway: IEEE, 2016: 269-272.
[3] Soomro M H, Giunta G, Laghi A, et al. Segmenting MR ima-ges by level-set algorithms for perspective colorectal cancer diagnosis[C]//Proceedings of the 2017 VI ECCOMAS The-matic Conference on Computational Vision and Medical Image Processing Porto, Oct 18-20, 2017. Berlin, Heidelberg: Sprin-ger, 2017: 396-406.
[4] Chen Y T. A novel approach to segmentation and measure-ment of medical image using level set methods[J]. Magnetic Resonance Imaging, 2017, 39: 175-193.
[5] Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape[J]. International Journal of Computer Vision, 2007, 72(2): 195-215.
[6] Kamnitsas K, Ledig C, Newcombe V F, et al. Efficient multi- scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Medical Image Analysis, 2017, 36: 61-78.
[7] Dolz J, Desrosiers C, Ayed I B. 3D fully convolutional net-works for subcortical segmentation in MRI: a large-scale study[J]. NeuroImage, 2018, 170: 456-470.
[8] Menze B H, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE Transactions on Medical Imaging, 2015, 34(10): 1993-2024.
[9] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 39(4): 640-651.
[10] Ronneberger O, Fischer P, Brox T. U-Net: convolutional net-works for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[11] Roth H R, Lu L, Farag A, et al. DeepOrgan: multi-level deep convolutional networks for automated pancreas segmenta-tion[C]//LNCS 9349: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidel-berg: Springer, 2015: 556-564.
[12] Dou Q, Chen H, Yu L, et al. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1182-1195.
[13] Khened M, Alex V, Krishnamurthi G. Fully convolutional multi-scale residual densenets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers[J]. Medical Image Analysis, 2018, 51: 21-45.
[14] Roth H R, Lu L, Lay N, et al. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation[J]. Medical Image Analysis, 2018, 45: 94-107.
[15] Liao F, Liang M, Li Z, et al. Evaluate the malignancy of pul-monary nodules using the 3D deep leaky noisy-or network[J]. arXiv:1711.08324, 2017.
[16] Schlemper J, Oktay O, Chen L, et al. Attention-gated networks for improving ultrasound scan plane detection[J]. arXiv:1804. 05338, 2018.
[17] Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018.
[18] Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: lear-ning dense volumetric segmentation from sparse annotation[C]//LNCS 9901: Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Oct 17-21, 2016. Berlin, Heid-elberg: Springer, 2016: 424-432.
[19] Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision, Stanford, Oct 25-28, 2016. Washington: IEEE Com-puter Society, 2016: 565-571.
[20] He K M, Zhang X Y, Ren S Q, et al. Delving deep into recti-fiers: surpassing human-level performance on ImageNet classi-fication[C]//Proceedings of the 2015 International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1026-1034.
[21] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[22] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: the all convolutional net[J]. arXiv:1412.6806, 2015.
[23] Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Pro-ceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[24] Roth H R, Oda H, Hayashi Y, et al. Hierarchical 3D fully con-volutional networks for multi-organ segmentation[J]. arXiv:1704.06382, 2017.
[25] Wang F, Jiang M Q, Qian C, et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3156-3164.
[26] Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1412-1421.
[27] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[28] Wang X L, Girshick R, Gupta A, et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 7794-7803.
[29] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formu-lations[J]. Journal of Computation Physics, 1988, 79(1): 12-49.
[30] Chollet F. Keras[EB/OL]. (2019-11-06)[2019-07-04]. https://github.com/fchollet/keras.
[31] Kingma D P, Ba J. Adam: a method for stochastic optimi-zation[J]. arXiv:1412.6980, 2014.
[32] Wang Y, Liatsis P. An automated method for segmentation of coronary arteries in coronary CT imaging[C]//Proceedings of the 2010 International Conference on Developments in E-systems Engineering, London, Sep 6-8, 2010. Piscataway: IEEE, 2010: 12-16. |