计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (12): 2122-2131.DOI: 10.3778/j.issn.1673-9418.1910016

• 图形图像 • 上一篇    下一篇

稀疏重构和紧凑性结合的图像显著性检测

张莹莹,葛洪伟   

  1. 1. 江南大学 江苏省模式识别与计算智能工程实验室,江苏 无锡 214122
    2. 江南大学 物联网工程学院,江苏 无锡 214122
  • 出版日期:2020-12-01 发布日期:2020-12-11

Image Saliency Detection Combining Sparse Reconstruction and Compactness

ZHANG Yingying, GE Hongwei   

  1. 1. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2020-12-01 Published:2020-12-11

摘要:

针对复杂环境下,当前图像显著性检测算法难以正确检测显著物体的问题,提出结合稀疏重构误差和图像显著区域紧凑性计算图像显著性的方法。首先提取图像中的主结构以弱化背景噪声,并将处理后的图像分割成若干超像素。一方面利用边界超像素构建背景字典,将各个超像素投影在该字典上进行稀疏重构,利用重构误差得到基于稀疏重构的显著图;另一方面利用图像中显著物体的紧凑性分别计算基于前景、背景种子的显著图并融合。最后将由稀疏重构误差和紧凑性得到的显著图融合得到最终的显著图。在多个公开数据集上,将所提算法与近些年提出的13种算法进行对比实验,实验结果显示提出的算法优于所有对比算法。

关键词: 显著性, 稀疏重构, 紧凑性, 结构提取

Abstract:

Aiming at the problem that existing image saliency detection algorithms can??t correctly detect salient objects in complex environments, this paper proposes a method combining sparse reconstruction error and the compactness of image salient regions to calculate image saliency. Firstly, the main structure of the image is extracted to reduce background noise. Then the processed image is segmented into several superpixels. On one hand, the background dictionary is constructed by using the boundary superpixels. Each superpixel is projected on the dictionary for sparse reconstruction, and the reconstruction error is used to obtain a saliency map based on sparse reconstruction. On the other hand, the maps based on foreground seeds and background seeds are calculated separately via compactness of salient objects and fused. Finally, the saliency map obtained by the sparse reconstruction error and compactness are fused to get the final saliency map. The proposed algorithm is compared with 13 algorithms proposed in recent years on several public datasets. The experimental results show that the proposed algorithm is superior to all comparison algorithms.

Key words: saliency, sparse reconstruction, compactness, structure extraction