[1] Yu J P, Zhou X M, Chen M. Research on representative alg-orithms of swarm intelligence[J]. Computer Engineering and Applications, 2010, 46(25): 1-4. 余建平, 周新民, 陈明. 群体智能典型算法研究综述[J]. 计算机工程与应用, 2010, 46(25): 1-4.
[2] Wang M, Zhu Y L, He X X. A survey of swarm intelligence[J]. Computer Engineering, 2005, 31(22): 204-206. 王玫, 朱云龙, 何小贤. 群体智能研究综述[J]. 计算机工程, 2005, 31(22): 204-206.
[3] Kang Q, Zhang Y, Wang L, et al. Application overview on swarm intelligence[J]. Metallurgical Industry Automation, 2005, 29(5): 7-10. 康琦, 张燕, 汪镭, 等. 群体智能应用综述[J]. 冶金自动化, 2005, 29(5): 7-10.
[4] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948.
[5] Ren Z H, Wang J, Gao Y L. The global convergence analysis of particle swarm optimization algorithm based on Markov chain[J]. Control Theory & Applications, 2011(4): 17-21. 任子晖, 王坚, 高岳林. 马尔科夫链的粒子群优化算法全局收敛性分析[J]. 控制理论与应用, 2011(4): 17-21.
[6] Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[7] Qin Q D, Cheng S, Li L, et al. Artificial bee colony algorithm: a survey[J]. CAAI Transactions on Intelligent Systems, 2014, 9(2): 127-135. 秦全德, 程适, 李丽, 等. 人工蜂群算法研究综述[J]. 智能系统学报, 2014, 9(2): 127-135.
[8] Kong X Y, Liu S Y, Wang Z. Almost sure convergence of artificial bee colony algorithm: a martingale method[J]. Computer Science, 2015, 42(9): 246-248. 孔翔宇, 刘三阳, 王贞. 人工蜂群算法的几乎必然强收敛性: 鞅方法[J]. 计算机科学, 2015, 42(9): 246-248.
[9] Yang X S. A new metaheuristic bat-inspired algorithm[J]. Computer Knowledge & Technology, 2010, 284: 65-74.
[10] Shang J N, Cheng T, Yue K Q, et al. Markov chain model analysis of bat algorithm[J]. Computer Engineering, 2017, 43(7): 198-202. 尚俊娜, 程涛, 岳克强, 等. 蝙蝠算法的Markov链模型分析[J]. 计算机工程, 2017, 43(7): 198-202.
[11] Yang X S, Deb S. Cuckoo search via Lévy flights[C]//Pro-ceedings of the 2009 World Congress on Nature & Biologically Inspired Computing. Piscataway: IEEE, 2009: 210-214.
[12] Yang X S, Deb S. Engineering optimisation by cuckoo search[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330-343.
[13] Lin S J, Dong C, Chen M Z, et al. Summary of new group intelligent optimization algorithms[J]. Computer Engineering and Applications, 2018, 54(12): 1-9. 林诗洁, 董晨, 陈明志, 等. 新型群智能优化算法综述[J]. 计算机工程与应用, 2018, 54(12): 1-9.
[14] Wang L, Lv S X, Zeng Y R. Literature survey of fruit fly optimization algorithm[J]. Control and Decision, 2017, 32(7): 1153-1162. 王林, 吕盛祥, 曾宇容. 果蝇优化算法研究综述[J]. 控制与决策, 2017, 32(7): 1153-1162.
[15] Zhang X F, Wang X Y. Survey of cuckoo search algorithm[J]. Computer Engineering and Applications, 2018, 54(18): 8-16. 张晓凤, 王秀英. 布谷鸟搜索算法综述[J]. 计算机工程与应用, 2018, 54(18): 8-16.
[16] Garg A, Sahu O P. Cuckoo search based optimal mask generation for noise suppression and enhancement of speech signal[J]. Journal of King Saud University-Computer and Information Sciences, 2015, 27(3): 269-277.
[17] Niu H F, Song W P, Ning A P, et al. Application of chaos cuckoo search algorithm in harmonic estimation[J]. Journal of Computer Applications, 2017, 37(1): 239-243. 牛海帆, 宋卫平, 宁爱平, 等. 混沌布谷鸟搜索算法在谐波估计中的应用[J]. 计算机应用, 2017, 37(1): 239-243.
[18] Valian E, Tavakoli S, Mohanna S, et al. Improved cuckoo search for reliability optimization problems[J]. Computers & Industrial Engineering, 2013, 64(1): 459-468.
[19] Civicioglu P, Besdok E. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evo-lution and artificial bee colony algorithms[J]. Artificial Inte-lligence Review, 2013, 39(4): 315-346.
[20] Wang L Y, Yang S P, Zhao W G. Structural damage iden-tification of bridge erecting machine based on improved Cuckoo search algorithm[J]. Journal of Beijing Jiaotong University, 2013, 37(4): 168-173. 王利英, 杨绍普, 赵卫国. 基于改进布谷鸟搜索算法的架桥机结构损伤识别[J]. 北京交通大学学报, 2013, 37(4): 168-173.
[21] Zheng H Q, Zhou Y Q. Self-adaptive step cuckoo search algorithm[J]. Computer Engineering and Applications, 2013, 49(10): 68-71. 郑洪清, 周永权. 一种自适应步长布谷鸟搜索算法[J]. 计算机工程与应用, 2013, 49(10): 68-71.
[22] Li M, Cao D X. Hybrid optimization algorithm of cuckoo search and DE[J]. Computer Engineering and Applications, 2013, 49(9): 57-60. 李明, 曹德欣. 混合CS算法的DE算法[J]. 计算机工程与应用, 2013, 49(9): 57-60.
[23] Gherboudj A, Layeb A, Chikhi S. Solving 0-1 knapsack problems by a discrete binary version of cuckoo search alg-orithm[J]. International Journal of Bio-Inspired Computation, 2012, 4(4): 229-236.
[24] Wang C, Liu C, Mu D, et al. VRPSPDTW problem solving by discrete cuckoo search[J]. Computer Intergrated Manufac-turing Systems, 2018, 24(3): 570-582. 王超, 刘超, 穆东, 等. 基于离散布谷鸟算法求解带时间窗和同时取送货的车辆路径问题[J]. 计算机集成制造系统, 2018, 24(3): 570-582.
[25] Zhang M. Hybrid multi-objective cuckoo search with dynamical local search[J]. Memetic Computing, 2017, 10(4): 1-10.
[26] Guerrero M, Castillo O, García M. Fuzzy dynamic parameters adaptation in the cuckoo search algorithm using fuzzy logic[C]//Proceedings of the 2015 IEEE Congress on Evolu-tionary Computation. Piscataway: IEEE, 2015: 441-448.
[27] Wang F, He X S, Wang Y, et al. Markov model and conv-ergence analysis based on cuckoo search algorithm[J]. Com-puter Engineering, 2012, 38(11): 180-183. 王凡, 贺兴时, 王燕, 等. 基于CS算法的Markov模型及收敛性分析[J]. 计算机工程, 2012, 38(11): 180-183.
[28] Du L M, Ruan Q, Feng D K. Cuckoo search algorithm based on conjugate gradient method[J]. Computers and Applied Chemistry, 2013, 30(4): 406-410. 杜利敏, 阮奇, 冯登科. 基于共轭梯度的布谷鸟搜索算法[J]. 计算机与应用化学, 2013, 30(4): 406-410.
[29] Xie X Y. Cuckoo search and its application on the biclustering analysis[D]. Chengdu: University of Electronic Science and Technology of China, 2014. 解翔宇. 布谷鸟搜索及其在双聚类分析的应用研究[D]. 成都: 电子科技大学, 2014.
[30] Ning A P, Zhang X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558. 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558.
[31] Luo J P, Li X, Chen M R. The Markov model of shuffled frog leaping algorithm and its convergence analysis[J]. Acta Electronica Sinica, 2010, 38(12): 2875-2880.骆剑平, 李霞, 陈泯融. 混合蛙跳算法的Markov模型及其收敛性分析[J]. 电子学报, 2010, 38(12): 2875-2880. |