[1] Sun L, Jeon B, Zheng Y, et al. Hyperspectral image restoration using low-rank representation on spectral difference image[J].?IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1151-1155.
[2] Xu Y, Wu Z, Chanussot J, et al. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution[J]. IEEE Transactions on Image Processing, 2019, 28(6): 3034-3047.
[3] Zhang L, Zhang L, Du B, et al. Hyperspectral image unsuper-vised classification by robust manifold matrix factorization[J]. Information Sciences, 2019, 485: 154-169.
[4] Zhang L, Zhang Q, Du B, et al. Simultaneous spectral-spatial feature selection and extraction for hyperspectral images[J].IEEE Transactions on Cybernetics, 2018, 48(1): 16-28.
[5] Wu Z, Zhu W, Chanussot J, et al. Hyperspectral anomaly detection via global and local joint modeling of background[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3858-3869.
[6] Wu Z, Li Y, Plaza A, et al. Parallel and distributed dimen-sionality reduction of hyperspectral data on cloud computing architectures[J].?IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,?2016, 9(6): 2270-2278.
[7] Xu Y, Wu Z, Wei Z, et al. Low-rank decomposition and total variation regularization of hyperspectral video sequences[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1680-1694.
[8] Chen Y J, Ma C Y, Sun L, et al. Edge-modified superpixel based spectral-spatial kernel method for hyperspectral image classification[J]. Acta Electronica Sinica, 2019, 47(1): 73-81.陈允杰, 马辰阳, 孙乐, 等. 基于边缘修正的高光谱图像超像素空谱核分类方法[J]. 电子学报, 2019, 47(1): 73-81.
[9] Sun L, Jeon B, Zheng Y, et al. A novel weighted cross total variation method for hyperspectral image mixed denoising[J]. IEEE Access, 2017, 5: 27172-27188.
[10] Sun L, Zhan T, Wu Z, et al. Hyperspectral mixed denoising via spectral difference-induced total variation and low-rank approximation[J]. Remote Sensing, 2018, 10(12): 1956.
[11] Xu Y, Wu Z, Li J, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 1990-2000.
[12] Imani M. Hyperspectral anomaly detection using differential image[J]. IET Image Processing, 2018, 12(5): 801-809.
[13] Reed I S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1990, 38(10): 1760-1770.
[14] Nasrabadi N M. Regularization for spectral matched filter and RX anomaly detector[J]. Proceedings of SPIE the International Society for Optical Engineering, 2008, 6966.
[15] Hazel G G. Multivariate gaussian MRF for multispectral scene segmentation and anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1199-1211.
[16] Guo Q, Zhang B, Ran Q, et al. Weighted-RXD and linear filter-based RXD: improving background statistics estimation for anomaly detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2014, 7(6): 2351-2366.
[17] Zhao C, Yao X, Yan Y. Modified kernel RX algorithm based on background purification and inverse-of-matrix-free calcu-lation[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(4): 544-548.
[18] Zhu L, Wen G. Hyperspectral anomaly detection via back-ground estimation and adaptive weighted sparse represen-tation[J]. Remote Sensing, 2018, 10(2): 272-291.
[19] Li W, Du Q. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1463-1474.
[20] Xu Y, Wu Z, Chanussot J, et al. Joint reconstruction and anomaly detection from compressive hyperspectral images using mahalanobis distance-regularized tensor RPCA[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2919-2930.
[21] Mei X, Ma Y, Li C, et al. Robust GBM hyperspectral image unmixing with superpixel segmentation based low rank and sparse representation[J]. Neurocomputing, 2018, 275: 2783-2797.
[22] Song X Y, Zhou L L, Li Z G, et al. Review on superpixel methods in image segmentation[J]. Journal of Image and Graphics, 2015, 20(5): 599-608.宋熙煜, 周利莉, 李中国, 等. 图像分割中的超像素方法研究综述[J]. 中国图象图形学报, 2015, 20(5): 599-608.
[23] Bertsekas D P. Constrained optimization and Lagrange multiplier methods[M]. Amsterdam: Elsevier, 1982.
[24] Lin Z C, Liu R S, Su Z X. Linearized alternating direction method with adaptive penalty for low-rank representation[C]//Proceedings of the 25th Annual Conference on Neural Information Processing Systems, Granada, Dec 12-14, 2011: 612-620.
[25] Chen Y, Nasrabadi N M, Tran T D. Simultaneous joint sparsity model for target detection in hyperspectral imagery[J]. IEEE Geoscience Remote Sensing Letters, 2011, 8(4): 676-680.
[26] Candès E J, Li X, Ma Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1-37. |