[1] YAN S. Fundamentals of digital electronics[M]. 5th ed. Beijing: Higher Education Press, 2006.
阎石. 数字电子技术基础[M]. 5版. 北京: 高等教育出版社, 2006.
[2] SKOWRON A, RAUSZER C. The discernibility matrices and functions in information systems[M]//SLOWINSKI R. Intelligent Decision Support-Handbook of Applications and Advances of the Rough Sets Theory. Berlin, Heidelberg: Springer, 1992.
[3] SKOWRON A. A synthesis of decision rules: applications of discernibility matrix[M]//LIN T Y, CERCONE N. Rough Sets and Data Mining Analysis of Imprecise Data. Hingham: Kluwer Academic Publishers, 1993.
[4] YIN L Z, YANG C H, WANG X L, et al. An incremental algorithm for attribute reduction based on labeled discerni-bility matrix[J]. Acta Automatica Sinica, 2014, 40(3): 397-404.
尹林子, 阳春华, 王晓丽, 等. 基于标记可辨识矩阵的增量式属性约简算法[J]. 自动化学报, 2014, 40(3): 397-404.
[5] QIAN W, SHU W, XIE Y, et al. Feature selection using com-pact discernibility matrix-based approach in dynamic incom-plete decision system[J]. Journal of Information Science & Engineering, 2015, 31(2): 509-527.
[6] WANG C Z, HE Q, CHEN D G, et al. A novel method for attribute reduction of covering decision systems[J]. Inform-ation Sciences, 2014, 254: 181-196.
[7] DAI J H. Rough set approach to incomplete numerical data[J]. Information Sciences, 2013, 241: 43-57.
[8] LIU G, LI L, YANG J, et al. Attribute reduction approaches for general relation decision systems[J]. Pattern Recognition Letters, 2015, 65(C): 81-87.
[9] LAZO-CORTéS M S, MARTíNEZ-TRINIDAD J F, CARRASCO-OCHOA J A, et al. A new algorithm for com-puting reducts based on the binary discernibility matrix[J]. Intelligent Data Analysis, 2016, 20(2): 317-337.
[10] LI H, LI D, ZHAI Y, et al. A novel attribute reduction app-roach for multi-label data based on rough set theory[J]. In-formation Sciences, 2016, 367: 827-847.
[11] GAO J, MA H, HAN Z D. Attribute reduction algorithm based on discernibility matrix with algebraic method[C]//Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference, Xi??an, Jan 10-11, 2015: 1-5.
[12] KONECNY J. On attribute reduction in concept lattices: methods based on discernibility matrix are outperformed by basic clarification and reduction[J]. Information Sciences, 2017, 415: 199-212.
[13] KONECNY J, KRAJCA P. On attribute reduction in concept lattices: experimental evaluation shows discernibility matrix based methods inefficient[J]. Information Sciences, 2018, 467: 431-445.
[14] KONECNY J, KRAJCA P. On attribute reduction in con-cept lattices: the polynomial time discernibility matrix-based method becomes the CR-method[J]. Information Sciences, 2019, 491: 48-62.
[15] CHEN Z H, MA H. Granular matrix based rapid parallel reduction algorithm for MIMO truth table[J]. Journal of Electronics and Information Technology, 2015, 37(5): 1260-1265.
陈泽华, 马贺. 基于粒矩阵的多输入多输出真值表快速并行约简算法[J]. 电子与信息学报, 2015, 37(5): 1260-1265.
[16] LI J H, HE J J, WU W Z. Optimization of class-attribute block in multi-granularity formal concept analysis[J]. Journal of Shandong University (Natural Science), 2020, 55(5): 1-12.
李金海, 贺建君, 吴伟志. 多粒度形式概念分析的类属性块优化[J]. 山东大学学报(理学版), 2020, 55(5): 1-12.
[17] SONG B, YAN J X, CHEN Z H. Rapid knowledge reduction of large scale truth table based on variable granularity[J].Computer Science, 2018, 45(7): 167-171.
宋波, 闫继雄, 陈泽华. 基于变粒度的大规模真值表快速知识约简[J]. 计算机科学, 2018, 45(7): 167-171.
[18] CHEN Z H, YAN J X, CHAI J. Formal concept analysis based parallel reduction algorithm for MIMO truth table[J]. Journal of Electronics and Information Technology, 2017, 39(9): 2259-2265.
陈泽华, 闫继雄, 柴晶. 基于形式概念分析的多输入多输出真值表并行约简算法[J]. 电子与信息学报, 2017, 39(9): 2259-2265. |