[1] E H H, ZHANG W J, XIAO S Q. Survey of entity relationship extraction based on deep learning[J]. Journal of Software, 2019, 30(6): 1793-1818.
鄂海红, 张文静, 肖思琪. 深度学习实体关系抽取研究综述[J]. 软件学报, 2019, 30(6): 1793-1818.
[2] ETZIONI O, CAFARELLA M, DOWNEY D, et al. Unsupervised named-entity extraction from the web: an experimental study[J]. Artificial Intelligence, 2005, 165(1): 91-134.
[3] BARTOLI A, DE LORENZO A, MEDVET E, et al. Active learning of regular expressions for entity extraction[J]. IEEE Transactions on Cybernetics, 2017, 48(3): 1067-1080.
[4] GREENFIELD K, CACERES R S, COURY M, et al. A reverse approach to named entity extraction and linking in microposts[C]//Proceedings of the 6th Workshop on “Making Sense of Microposts” Co-located with the 25th International World Wide Web Conference, Montréal, Apr 11, 2016: 67-69.
[5] EL ENAS M F. A framework for extracting biological relations from different resources[J]. International Journal of Computer Applications, 2015, 119(3): 21044.
[6] HUANG K Y. A research on weakly supervised relation extraction[D]. Beijing: Beijing University of Posts and Telecommunications, 2018.
黄恺瑜. 弱监督条件下的实体关系抽取探究[D]. 北京: 北京邮电大学, 2018.
[7] HUANG J M. Unsupervised relation extraction based on matrix factorization[D]. Wuhan: Wuhan University, 2018.
黄济民. 基于矩阵分解的无监督实体关系提取方法研究[D]. 武汉: 武汉大学, 2018.
[8] ZENG D J, LIU K, LAI S W, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics, Dublin, Aug 23-29, 2014. Stroudsburg: ACL, 2014: 2335-2344.
[9] ZENG D J, LIU K, CHEN Y B, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 1753-1762.
[10] HUANG Y Y, WANG W Y. Deep residual learning for weakly-supervised relation extraction[J]. arXiv:1707.08866, 2017.
[11] KATIYAR A, CARDIE C. Going out on a limb: joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30- Aug 4, 2017. Stroudsburg: ACL, 2017: 917-928.
[12] NGUYEN T H, GRISHMAN R. Relation extraction: perspective from convolutional neural networks[C]//Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, Denver, Jun 5, 2015. Stroudsburg: ACL, 2015: 39-48.
[13] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 207-212.
[14] MIWA M, BANSAL M. End-to-end relation extraction using LSTMs on sequences and tree structures[J]. arXiv:1601. 00770, 2016.
[15] ZHENG S, WANG F, BAO H, et al. Joint extraction of entities and relations based on a novel tagging scheme[J]. arXiv:1706.05075, 2017. |