计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (2): 348-358.DOI: 10.3778/j.issn.1673-9418.2009032

• 数据库技术 • 上一篇    下一篇

空间数据库中混合数据组最近邻查询

蒋祎莹, 张丽平, 金飞虎+(), 郝晓红   

  1. 哈尔滨理工大学 计算机科学与技术学院,哈尔滨 150080
  • 收稿日期:2020-09-14 修回日期:2020-11-27 出版日期:2022-02-01 发布日期:2021-01-12
  • 通讯作者: + E-mail: a1889657@163.com
  • 作者简介:蒋祎莹(1995—),女,黑龙江齐齐哈尔人,博士研究生,CCF学生会员,主要研究方向为空间数据库、大数据。
    张丽平(1976—),女,辽宁调兵山人,博士,副教授,主要研究方向为时空数据库、信息数据安全。
    金飞虎(1973—),男,黑龙江哈尔滨人,博士,副教授,主要研究方向为时空数据库、大数据、人工智能。
    郝晓红(1969—),女,黑龙江哈尔滨人,硕士,高级实验师,主要研究方向为数据库理论及应用、空间推理、空间关系、数据挖掘。
  • 基金资助:
    国家自然科学基金(61872105);黑龙江省科学基金(LH2020F047);黑龙江省教育厅科学技术研究项目(12531z004)

Groups Nearest Neighbor Query of Mixed Data in Spatial Database

JIANG Yiying, ZHANG Liping, JIN Feihu+(), HAO Xiaohong   

  1. College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
  • Received:2020-09-14 Revised:2020-11-27 Online:2022-02-01 Published:2021-01-12
  • About author:JIANG Yiying, born in 1995, Ph.D. candidate, student member of CCF. Her research interests include spatial database and big data.
    ZHANG Liping, born in 1976, Ph.D., associate professor. Her research interests include spatio-temporal database and information data security.
    JIN Feihu, born in 1973, Ph.D., associate professor. His research interests include spatio-temporal database, big data and artificial intelligence.
    HAO Xiaohong, born in 1969, M.S., expert experimenter. Her research interests include data-base theory and application, spatial reasoning, spatial relations and data mining.
  • Supported by:
    National Natural Science Foundation of China(61872105);Science Foundation of Heilongjiang Province(LH2020F047);Science and Technology Research Project of Heilongjiang Provincial Department of Education(12531z004)

摘要:

现有的组最近邻查询方法主要将空间中数据对象抽象为点或线段进行处理。但在现实应用中,仅仅将空间对象抽象为点或者线段,往往会影响查询的精度及效率。针对现有的组最近邻查询方法无法直接有效地处理混合数据组最近邻查询的不足,提出空间数据库中混合数据组最近邻查询方法。首先提出了混合数据Voronoi图的概念和性质。接着基于混合数据Voronoi图对混合数据集进行剪枝,针对查询对象数量为1和查询对象数量大于1的情况分别给出了相应的剪枝算法。利用所提的剪枝算法能有效去除不可能成为结果的数据对象,得到候选集合。在精炼过程中根据各个数据对象之间的位置关系给出相应的距离计算方法,通过比较候选集中数据对象到各个查询对象的距离之和,最终得到正确的查询结果。理论研究和实验表明,所提算法能够准确、有效地处理混合数据组最近邻查询问题。

关键词: 地理信息系统, 空间数据库, 组最近邻, 混合数据, 混合数据Voronoi图

Abstract:

The existing group nearest neighbor query methods mainly abstract data objects in space as points or line segments for processing. However, in real applications, simply abstracting spatial objects into points or line segments often affects the accuracy and efficiency of the query. In view of the shortcomings that the existing group nearest neighbor query method cannot directly and effectively deal with the group nearest neighbor query of the mixed data, the group nearest neighbor query method of the mixed data in the spatial database is proposed in this paper. Firstly, the concept and properties of the mixed data Voronoi diagram are proposed. Then the mixed data set is pruned based on the mixed data Voronoi diagram. The corresponding pruning algorithm is given for the case that the number of query objects is 1 and the number of query objects is greater than 1. The proposed pruning algorithm can effectively remove the impossible resultant data objects and get the candidate set. In the refining process, a corresponding distance calculation method is given according to the position relationship between data objects, and the correct query result is finally obtained by comparing the sum of the distance between the data object in the candidate set and each query object. Theoretical research and experiments show that the proposed algorithm in this paper can accurately and effectively deal with the group nearest neighbor query problem of mixed data.

Key words: geographic information system, spatial database, group nearest neighbor, mixed data, mixed data Voronoi diagram

中图分类号: