[1] YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and
Analytics, 2018, 1(2): 83-107.
[2] HE X M. A survey of multi-view clustering
algorithms[J]. Software Guide, 2019, 18(4): 79-81.
何雪梅. 多视图聚类算法综述[J]. 软件导刊,
2019, 18(4): 79-81.
[3] GÖNEN M, ALPAYDINl E. Multiple kernel learning
algorithms[J]. Journal of Machine Learning Research, 2011, 64(12):
2211-2268.
[4] WANG H, YANG Y, LIU B. GMC: graph-based multi-view
clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(6):
1116-1129.
[5] GAO H C, NIE F P, LI X L, et al. Multi-view subspace
clustering[C]//Proceedings of the 2015 IEEE International Conference on Computer
Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015:
4238-4246.
[6] HE M J. Research on the multi-view clustering algorithms based
on NMF[D]. Chengdu: Southwest Jiaotong University, 2017.
何梦娇.
基于非负矩阵分解的多视图聚类研究[D]. 成都: 西南交通大学, 2017.
[7] HUANH S D. Research and
application of matrix factorization algorithms for multi-source heterogeneous
data[D]. Chengdu: University of Electronic Science and Technology of China,
2019.
黄树东. 面向多源异构数据的矩阵分解算法研究及应用[D]. 成都: 电子科技大学, 2019.
[8] FAN R D, HOU C
P. Robust auto-weighted multi-view subspace clustering[J]. Journal of Frontiers
of Computer Science and Technology, 2021, 15(6): 1062-1073.
范瑞东, 侯臣平.
鲁棒自加权的多视图子空间聚类[J]. 计算机科学与探索, 2021, 15(6): 1062-1073.
[9] LIU J H, WANG Y, HE
X L. Improved multi-view subspace clustering with diversify driven[J]. Computer
Era, 2020(9): 91-94.
刘金花, 王洋, 贺潇磊. 改进的多样性驱动的多视图子空间聚类算法[J]. 计算机时代, 2020(9):
91-94.
[10] GUO Y H. Convex subspace representation learning from multi-view
data[C]//Proceedings of the 27th AAAI Conference on Artificial Intelligence,
Bellevue, Jul 14-18, 2013. Menlo Park: AAAI, 2013: 387-393.
[11] BRBIC M,
KOPRIVA I. Multi-view low-rank sparse subspace clustering[J]. Pattern
Recognition, 2018, 73: 247-258.
[12] LI R H, ZHANG C Q, HU Q H, et al.
Flexible multi-view representation learning for subspace
clustering[C]//Proceedings of the 28th International Joint Conference on
Artificial Intelligence, Macao, China, Aug 10-16, 2019: 2916-2922.
[13] ZHANG
C Q, HU Q H, FU H Z, et al. Latent multi-view subspace
clustering[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and
Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer
Society, 2017: 4333-4341.
[14] ELHAMIFAR E, VIDAL R. Sparse subspace
clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
[15] MOHAR B. The
Laplacian spectrum of graphs[M]//ALAVI Y, CHARTRAND G, OELLERMANN O R, eds.
Graph Theory, Combinatorics and Applications. New York: John Wiley & Sons,
Inc., 1991.
[16] FAN K. On a theorem of Weyl concerning eigenvalues of linear
transformations I[J]. Proceedings of the National Academy of Sciences of the
United States of America, 1949, 35(11): 652-655.
[17] NIE F P, WANG X Q,
HUANG H, Clustering and projected clustering with adaptive
neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM,
2014: 977-986.
[18] KUMAR A, RAI P, DAUME H. Co-regularized multi-view
spectral clustering[C]//Proceedings of the 25th Annual Con-ference on Neural
Information Processing Systems, Granada, Dec 12-14, 2011. Red Hook: Curran
Associates, 2011: 1413- 1421.
[19] CAI X, NIE F P, HUANG H. Multi-view
K-means clustering on big data[C]//Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI,
2013: 2598-2604.
[20] KANG Z, GUO Z P, HUANG S D, et al. Multiple partitions
aligned clustering[C]//Proceedings of the 28th International Joint Conference on
Artificial Intelligence, Macao, China, Aug 10-16, 2019: 2701-2707.
|