[1] |
VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5):307-318.
DOI
URL
|
[2] |
WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theo-retical basis and empirical results[J]. Journal of Trans-portation Engineering, 2003, 129(6):664-672.
|
[3] |
KUMAR S V, VANAJAKSHI L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data[J]. European Transport Research Review, 2015, 7(3):1-9.
DOI
URL
|
[4] |
JEONG Y S, BYON Y J, CASTRO-NETO M M, et al. Su-pervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4):1700-1707.
DOI
URL
|
[5] |
WANG J, SHI Q. Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector mac-hine theory[J]. Transportation Research Part C: Emerging Technologies, 2013, 27:219-232.
DOI
URL
|
[6] |
ZHANG Y, XIE Y. Forecasting of short-term freeway vo-lume with v-support vector machines[J]. Transportation Re-search Record: Journal of the Transportation Research Board, 2007(1):92-99.
|
[7] |
ERMAGUN A, LEVINSON D. Spatiotemporal traffic fore-casting: review and proposed directions[J]. Transport Re-views, 2018, 38(6):786-814.
|
[8] |
VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we’re going[J]. Transportation Research Part C: Emerging Tech-nologies, 2014, 43:3-19.
|
[9] |
MA X, DAI Z, HE Z, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4):818.
DOI
URL
|
[10] |
杜圣东, 李天瑞, 杨燕, 等. 一种基于序列到序列时空注意力学习的交通流预测模型[J]. 计算机研究与发展, 2020, 57(8):1715-1728.
|
|
DU S D, LI T R, YANG Y, et al. A sequence-to-sequence spatial-temporal attention learning model for urban traffic flow prediction[J]. Journal of Computer Research and De-velopment, 2020, 57(8):1715-1728.
|
[11] |
ZHANG J, ZHENG Y, QI D. Deep spatio-temporal resi-dual networks for citywide crowd flows prediction[C]//Pro-ceedings of the 31st AAAI Conference on Artificial Intel-ligence. Menlo Park: AAAI, 2017: 1655-1661.
|
[12] |
ZHANG J, ZHENG Y, QI D, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Ar-tificial Intelligence, 2018, 259:147-166.
|
[13] |
JIANG W, ZHANG L. Geospatial data to images: a deep-learning framework for traffic forecasting[J]. Tsinghua Science & Technology, 2019, 24(1):52-64.
|
[14] |
YAO H, TANG X, WEI H, et al. Modeling spatial-temporal dynamics for traffic prediction[J]. arXiv:1803.01254, 2018.
|
[15] |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5):755-780.
|
|
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Com-puters, 2020, 43(5):755-780.
|
[16] |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional re-current neural network: data-driven traffic forecasting[C]//Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018.
|
[17] |
FANG S, ZHANG Q, MENG G, et al. GSTNet: global spatial-temporal network for traffic flow prediction[C]//Procee-dings of the 28th International Joint Conference on Artifi-cial Intelligence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 10-16.
|
[18] |
GUO S, LIN Y, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow fore-casting[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 922-929.
|
[19] |
DIAO Z, WANG X, ZHANG D, et al. Dynamic spatial-temporal graph convolutional neural networks for traffic forecasting[C]//Proceedings of the 2019 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2019: 890-897.
|
[20] |
冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3):759-769.
|
|
FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow fore-casting[J]. Journal of Software, 2019, 30(3):759-769.
|
[21] |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Menlo Park: AAAI, 2018: 3634-3640.
|
[22] |
ZHAO L, SONG Y, ZHANG C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21:3848-3858.
DOI
URL
|
[23] |
WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelli-gence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 1907-1913.
|
[24] |
ZHAI D, LIU A, CHEN S, et al. SeqST-ResNet: a sequen-tial spatial temporal ResNet for task prediction in spatial crowdsourcing[C]//LNCS 11446: Proceedings of the 2019 International Conference on Database Systems for Advan-ced Applications. Cham: Springer, 2019: 260-275.
|
[25] |
YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//Procee-dings of the 32nd AAAI Conference on Artificial Intelli-gence. Menlo Park: AAAI, 2018: 2588-2595.
|
[26] |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequ-ence learning with neural networks[C]//Proceedings of the Advances in Neural Information Processing Systems. Red Hook: Curran Associates, 2014: 3104-3112.
|
[27] |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral net-works and locally connected networks on graphs[C]//Pro-ceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014.
|
[28] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast locali-zed spectral filtering[C]//Proceedings of the Advances in Neural Information Processing Systems. Red Hook: Curran Associates, 2016: 3844-3852.
|
[29] |
DAUPHIN Y N, FAN A, AULI M, et al. Language mode-ling with gated convolutional networks[C]// Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 933-941.
|
[30] |
VAN DEN OORD A, DIELEMAN S, ZEN H, et al. Wave-Net: a generative model for raw audio[C]// Proceedings of the 9th ISCA Speech Synconfproc Workshop, Sunnyvale, Sep 13-15, 2016: 125.
|