计算机科学与探索 ›› 2012, Vol. 6 ›› Issue (8): 760-768.DOI: 10.3778/j.issn.1673-9418.2012.08.009

• 学术研究 • 上一篇    

面向视频目标的快速稀疏编码跟踪算法

张  继1,2,王洪元1,2+   

  1. 1. 常州大学 信息科学与工程学院,江苏 常州 213164
    2. 常州市过程感知与互联技术重点实验室,江苏 常州 213164
  • 出版日期:2012-08-01 发布日期:2012-08-06

Fast Sparse Coding Algorithm for Video Object Tracking

ZHANG Ji1,2, WANG Hongyuan1,2+   

  1. 1. School of Information Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
    2. Changzhou Key Laboratory for Process Perception and Interconnected Technology, Changzhou, Jiangsu 213164, China
  • Online:2012-08-01 Published:2012-08-06

摘要: 关于稀疏编码的研究在最近几年成为许多研究领域的焦点,已有学者将其引入视频目标跟踪问题中。在贝叶斯推理框架下,基于l1-跟踪子能较好地处理目标物在视频场景中的各种复杂变化,达到较为鲁棒的跟踪效果,但算法复杂度高,很难进行实时跟踪。对原始l1-跟踪子在稀疏编码的过完备基构造,对目标物出现各种复杂变化的处理方式以及目标物模板的更新这三个方面进行了改进,设计了无需更新目标模板的高速跟踪方法;并通过大量比较实验,验证了该方法的跟踪精度与原始l1-跟踪子相似,但跟踪效率远高于l1-跟踪子,达到了实时跟踪的效果。

关键词: 稀疏编码, 贝叶斯推理, 视频目标跟踪, l1-跟踪子

Abstract: The research on sparse coding has become one of the most important fields in the last years, and some researchers introduce it into the issue of video object tracking. Under the framework of Bayesian inference, l1-tracker deals with complex changes of objects in video scenes successfully, the tracking is robust. However, the computation cost of l1-tracker is too expensive to achieve real-time tracking. This paper proposes a fast l1-tracker, and improves three components, including construction of over-complete basis, process method of complex object changes, and update of tracking template. In the proposed algorithm, there is no need to update the object template for tracking. Experimental results show that, compared with original l1-tracker, the proposed algorithm has comparative accuracy and is faster.

Key words: sparse coding, Bayesian inference, video based object tracking, l1-tracking