计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (5): 1182-1192.DOI: 10.3778/j.issn.1673-9418.2105016

• 理论与算法 • 上一篇    

融合随机反向学习的黏菌与算术混合优化算法

贾鹤鸣1,+(), 刘宇翔2, 刘庆鑫3, 王爽1, 郑荣1   

  1. 1.三明学院 信息工程学院,福建 三明 365004
    2.福州大学 物理与信息工程学院,福州 350108
    3.海南大学 计算机科学与技术学院,海口 570228
  • 收稿日期:2021-05-07 修回日期:2021-07-09 出版日期:2022-05-01 发布日期:2022-05-19
  • 通讯作者: + E-mail: jiaheminglucky99@126.com
  • 作者简介:贾鹤鸣(1983—),男,辽宁辽阳人,博士,教授,硕士生导师,主要研究方向为群体智能优化算法、特征选择等。
    刘宇翔(1999—),女,福建宁德人,硕士研究生,主要研究方向为群体智能优化算法。
    刘庆鑫(1997—),男,福建福州人,硕士研究生,主要研究方向为群体智能优化算法。
    王爽(1992—),女,山东邹城人,博士,副教授,主要研究方向为群体智能优化算法、特征选 择等。
    郑荣(1992—),男,江西上饶人,博士,副教授,主要研究方向为群体智能优化算法、特征选 择等。
  • 基金资助:
    福建省自然科学基金面上项目(2021J011128);福建省本科高校教育教学改革研究项目(FBJG20210338);三明市科技计划引导性项目(2020-G-61);三明市科技计划引导性项目(2021-S-8);三明学院引进高层次人才科研启动经费支持项目(20YG14);福建省农业物联网应用重点实验室开放研究基金(ZD2101);三明学院教育教学改革重点项目(J2010305);三明学院高教研究课题(SHE2013)

Hybrid Algorithm of Slime Mould Algorithm and Arithmetic Optimization Algorithm Based on Random Opposition-Based Learning

JIA Heming1,+(), LIU Yuxiang2, LIU Qingxin3, WANG Shuang1, ZHENG Rong1   

  1. 1. Department of Information Engineering, Sanming University, Sanming, Fujian 365004, China
    2. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
    3. School of Computer Science and Technology, Hainan University, Haikou 570228, China
  • Received:2021-05-07 Revised:2021-07-09 Online:2022-05-01 Published:2022-05-19
  • About author:JIA Heming, born in 1983, Ph.D., professor, M.S. supervisor. His research interests include swarm intelligence optimization algorithm, feature selection, etc.
    LIU Yuxiang, born in 1999, M.S. candidate. Her research interest is swarm intelligence optimization algorithm.
    LIU Qingxin, born in 1997, M.S. candidate. His research interest is swarm intelligence optimization algorithm.
    WANG Shuang, born in 1992, Ph.D., associate professor. Her research interests include swarm intelligence optimization algorithm, feature selection, etc.
    ZHENG Rong, born in 1992, Ph.D., associate professor. His research interests include swarm intelligence optimization algorithm, feature selection, etc.
  • Supported by:
    General Project of Fujian Natural Science Foundation(2021J011128);Research Project on Education and Teaching Reform of Undergraduate Colleges and Universities in Fujian Province(FBJG20210338);Guiding Project of Science and Technology Plan of Sanming City(2020-G-61);Guiding Project of Science and Technology Plan of Sanming City(2021-S-8);Project of Funding Support for Introducing High-Level Talents Science and Research of Sanming University(20YG14);Open Research Fund of Key Laboratory of Agricultural Internet of Things in Fujian Province(ZD2101);Key Project of Education and Teaching Reform of Sanming University(J2010305);Higher Education Research Project of Sanming University(SHE2013)

摘要:

黏菌优化算法(SMA)和算术优化算法(AOA)是最近提出的新型元启发式优化算法。SMA算法具有较强的全局探索能力,但迭代后期振荡作用较弱,易陷入局部最优,且收缩机制不强,导致收敛速度慢。AOA算法利用乘除算子进行位置更新,随机性强,具有较好的避免早熟收敛能力。针对上述问题,将两种算法结合并利用随机反向学习策略提高收敛速度,提出一种性能优越且高效的融合随机反向学习策略的黏菌与算术混合优化算法(HSMAAOA)。改进算法保留了SMA全局探索部分位置更新公式,局部开发阶段将乘除算子替换SMA收缩机制,提高算法随机性与跳出局部极值的能力。此外,通过随机反向学习策略增强改进算法种群多样性,提高收敛速度。实验结果表明,HSMAAOA算法具有良好的鲁棒性以及寻优精度,且明显提升了收敛速度。最后,通过焊接梁设计问题与压力容器设计问题,验证了HSMAAOA在工程问题上的适用性与有效性。

关键词: 黏菌优化算法(SMA), 算术优化算法(AOA), 混合优化, 随机反向学习

Abstract:

Slime mould algorithm (SMA) and arithmetic optimization algorithm (AOA) are new meta-heuristic optimization algorithms proposed recently. SMA has strong ability of global exploration, but the oscillation effect is weak in the late iteration. It is easy to fall into local optimum, and the contraction mechanism is not strong, which leads to slow convergence speed. AOA algorithm uses multiplication and division operator to update position, which has strong randomness and good ability to avoid premature convergence. To solve the above problems, this paper combines the two algorithms and uses random opposition-based learning strategy to improve the convergence speed, and proposes a hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning (HSMAAOA) with superior performance and high efficiency. The improved algorithm retains the SMA’s exploration phase and the exploitation phase will be replaced by the multiplication and division operators, which improves the capacity of the algorithm and the ability to jump out of the local optimal solution. In addition, random opposition-based learning strategy is used to enhance the diversity of the improved algorithm population and improve the convergence speed. The experimental results show that the HSMAAOA algorithm has good robustness and optimization accuracy, and significantly improves the convergence speed. Finally, the applicability and effectiveness of HSMAAOA in engineering problems are verified through the design of welded beams and the design of pressure vessels.

Key words: slime mould algorithm (SMA), arithmetic optimization algorithm (AOA), hybrid optimization, random opposition-based learning

中图分类号: