[1] PEILIN Z, STEVEN C H H, JIALEI W, et al. Online trans-fer learning[J]. Artificial Intelligence, 2014, 216: 76-102.
[2] HANRUI W, YUGUANG Y, YUZHONG Y, et al. Online heterogeneous transfer learning by knowledge transition[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(3): 26.
[3] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[4] JIE L, VAHID B, PEND H, et al. Transfer learning using com-putational intelligence: a survey[J]. Knowledge-Based Sys-tems, 2015, 80: 14-23.
[5] 赵鹏飞, 李艳玲, 林民. 面向迁移学习的意图识别研究进展[J]. 计算机科学与探索, 2020, 14(8): 1261-1274.
ZHAO P F, LI Y L, LIN M. Research progress of intention recognition for transfer learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1261-1274.
[6] 任豪, 刘柏嵩, 孙金杨. 面向知识迁移的跨领域推荐算法研究进展[J]. 计算机科学与探索, 2020, 14(11): 1813-1827.
REN H, LIU B S, SUN J Y. Research progress of cross domain recommendation algorithms for knowledge transfer[J]. Journal of Frontiers of Computer Science and Techno-logy, 2020, 14(11): 1813-1827.
[7] DAI W Y, YANG Q, XUE G R, et al. Boosting for transfer learning[C]//Proceedings of the 24th International Conference on Machine learning, Corvallis, Jun 20-24, 2007. New York: ACM, 2007: 193-200.
[8] LONG M, WANG J, DING G, et al. Adaptation regulariza-tion: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
[9] YAO Y, DORETTO G. Boosting for transfer learning with multiple sources[C]//Proceedings of the 23rd IEEE Confe-rence on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer So-ciety, 2010: 1855-1862.
[10] AMINI M R, USUNIER N, GOUTTE C. Learning from mul-tiple partially observed views—an application to multi-lingual text categorization[C]//Proceedings of the 23rd Annual Conference on Neural Information Processing Systems 2009, Vancouver, Dec 7-10, 2009. Red Hook: Curran Assoc-iates, 2009: 28-36.
[11] EATON E. Selective transfer between learning tasks using task-based boosting[C]//Proceedings of the 25th AAAI Con-ference on Artificial Intelligence. Menlo Park: AAAI Press, 2011: 337-342.
[12] DREDZE M, KULESZA A, CRAMMER K. Multi-domain learning by confidence-weighted parameter combination[J]. Machine Learning, 2010, 79(1/2): 123-149.
[13] PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vi-sion, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1406-1415.
[14] HOFFMAN J, MOHRI M, ZHANG N S. Algorithms and theory for multiple-source adaptation[C]//Proceedings of the Annual Conference on Neural Information Processing Sys-tems 2018, Montréal, Dec 3-8, 2018: 8256-8266.
[15] YAN Y G, WU Q Y, TAN M K, et al. Online heterogeneous transfer by hedge ensemble of offline and online decisions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7): 3252-3263.
[16] 孙勇, 谭文安, 谢娜, 等. 面向大规模服务性能预测的在线学习方法[J]. 计算机科学与探索, 2017, 11(12): 1922-1930.
SUN Y, TAN W A, XIE N, et al. Online learning method for performance prediction of large scale services[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(12): 1922-1930.
[17] HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
[18] VAPNIK V N. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 1995.
[19] KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
[20] WU Q Y, WU H R, ZHOU X M, et al. Online transfer lear-ning with multiple homogeneous or heterogeneous sources[J]. IEEE Transactions on Knowledge and Data Enginee-ring, 2017, 29(7): 1494-1507.
[21] KANG Z F, YANG B, YANG S T, et al. Online transfer lear-ning with multiple source domains for multi-class classifi-cation[J]. Knowledge-Based Systems, 2020, 190: 105149.
[22] 周晶雨, 王士同. 对不平衡目标域的多源在线迁移学习[J]. 智能系统学报, 2022, 17(2): 248-256.
ZHOU J Y, WANG S T. Multi-source online transfer lear-ning for imbalanced target domain[J]. CAAI Transactions on Intelligent Systems, 2022, 17(2): 248-256.
[23] CRAMMER K, DEKEL O, KESHET J, et al. Online passive-aggressive algorithms[J]. Journal of Machine Learning Re-search, 2006, 7: 551-585.
[24] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[25] MATHEW J, PANG C K, LUO M, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(9): 4065-4076.
[26] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adapta-tion[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5385-5394.
[27] RINGWALD T, STIEFELHAGEN R. Adaptiope: a modern benchmark for unsupervised domain adaptation[C]//Pro-ceedings of the 2021 IEEE Winter Conference on Applica-tions of Computer Vision, Waikoloa, Jan 3-8, 2021. Piscata-way: IEEE, 2021: 101-110. |