[1] OCASIO J, BABCOCK B, MALAWSKY D, et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy[J]. Nature Communications, 2019, 10(1): 1-17.
[2] ZHAO T, FU Y, ZHU J, et al. Single-cell RNA-seq reveals dynamic early embryonic-like programs during chemical repro-gramming[J]. Cell Stem Cell, 2018, 23(1): 31-45.
[3] OSORIO D, CAI J. Systematic determination of the mitoc-hondrial proportion in human and mice tissues for single-cell RNA sequencing data quality control[J]. Bioinformatics, 2021, 37(7): 963-967.
[4] BüTTNER M, MIAO Z, WOLF F A, et al. A test metric for assessing single-cell RNA-seq batch correction[J]. Nature Methods, 2019, 16(1): 43-49.
[5] BACHER R, CHU L F, LENG N, et al. SCnorm: robust nor-malization of single-cell RNA-seq data[J]. Nature Methods, 2017, 14(6): 584-586.
[6] TOWNES F W, HICKS S C, ARYEE M J, et al. Feature selec-tion and dimension reduction for single-cell RNA-Seq based on a multinomial model[J]. Genome Biology, 2019, 20(1): 295.
[7] BECHT E, MCINNES L, HEALY J, et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nature Biotechnology, 2019, 37(1): 38-44.
[8] 石险峰, 刘学军, 张礼. PUseqClust:一种RNA-seq数据聚类分析方法[J]. 软件学报, 2019, 30(9): 2857-2868.
SHI X F, LIU X J, ZHANG L. PUseqClust: a clustering analysis method for RNA-seq data[J]. Journal of Software, 2019, 30(9): 2857-2868.
[9] ANDREWS T S, HEMBERG M. Identifying cell populations with scRNASeq[J]. Molecular Aspects of Medicine, 2018, 59: 114-122.
[10] TRAPNELL C, CACCHIARELLI D, GRIMSBY J, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells[J]. Nature Bio-technology, 2014, 32(4): 381-386.
[11] JI Z, JI H. TSCAN: pseudo-time reconstruction and evalua-tion in single-cell RNA-seq analysis[J]. Nucleic Acids Res-earch, 2016, 44(13): e117.
[12] QIU X, MAO Q, TANG Y, et al. Reversed graph embedding resolves complex single-cell trajectories[J]. Nature Methods, 2017, 14(10): 979-982.
[13] STREET K, RISSO D, FLETCHER R B, et al. Slingshot: cell lineage and pseudotime inference for single-cell trans-criptomics[J]. BMC Genomics, 2018, 19(1): 1-16.
[14] KESTER L, VAN OUDENAARDEN A. Single-cell trans-criptomics meets lineage tracing[J]. Cell Stem Cell, 2018, 23(2): 166-179.
[15] GRIFFITHS J A, SCIALDONE A, MARIONI J C. Using single-cell genomics to understand developmental processes and cell fate decisions[J]. Molecular Systems Biology, 2018, 14(4): e8046.
[16] ENVER T, PERA M, PETERSON C, et al. Stem cell states, fates, and the rules of attraction[J]. Cell Stem Cell, 2009, 4(5): 387-397.
[17] BENDALL S C, DAVIS K L, AMIR E D, et al. Single-cell trajectory detection uncovers progression and regulatory coor-dination in human B cell development[J]. Cell, 2014, 157(3): 714-725.
[18] CHU L F, LENG N, ZHANG J, et al. Single-cell RNA-seq reveals novel regulators of human embryonic stem cell diffe-rentiation to definitive endoderm[J]. Genome Biology, 2016, 17(1): 173.
[19] 张淼, 孙祥瑞, 徐春明. 单细胞RNA测序数据分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 52-59.
ZHANG M, SUN X R, XU C M. Research progress of approaches in single cell RNA sequencing data analysis[J]. Biotechnology Bulletin, 2021, 37(1): 52-59.
[20] SAELENS W, CANNOODT R, TODOROV H, et al. A com-parison of single-cell trajectory inference methods[J]. Nature Biotechnology, 2019, 37(5): 547-554.
[21] MARQUES S, ZEISEL A, CODELUPPI S, et al. Oligoden-drocyte heterogeneity in the mouse juvenile and adult central nervous system[J]. Science, 2016, 352(6291): 1326-1329.
[22] LISI V, SINGH B, GIROUX M, et al. Enhanced neuronal regeneration in the CAST/Ei mouse strain is linked to exp-ression of differentiation markers after injury[J]. Cell Reports, 2017, 20(5): 1136-1147.
[23] TSANG J C H, VONG J S L, JI L, et al. Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics[J]. Proceedings of the National Academy of Sciences, 2017, 114(37): E7786-E7795.
[24] MARCO E, KARP R L, GUO G, et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic land-scape[J]. Proceedings of the National Academy of Sciences, 2014, 111(52): E5643-E5650.
[25] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(2605): 2579-2605.
[26] KIM T H, SAADATPOUR A, GUO G, et al. Single-cell transcript profiles reveal multilineage priming in early pro-genitors derived from Lgr5+ intestinal stem cells[J]. Cell Reports, 2016, 16(8): 2053-2060.
[27] FLETCHER R B, DAS D, GADYE L, et al. Deconstructing olfactory stem cell trajectories at single-cell resolution[J]. Cell Stem Cell, 2017, 20(6): 817-830.
[28] XIE J, YIN Y T, WANG J. TIPD: a probability distribution-based method for trajectory inference from single-cell RNA-seq data[J]. Interdisciplinary Sciences: Computational Life Sciences, 2021, 13: 652-665.
[29] TOBIN J. Estimation of relationships for limited dependent variables[J]. Econometrica, 1958, 26(1): 24-36.
[30] BENJAMINI Y, HOCHBERG Y. Controlling the false disco-very rate: a practical and powerful approach to multiple tes-ting[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1995, 57(1): 289-300.
[31] YEE T W, WILD C J. Vector generalized additive models[J]. Journal of the Royal Statistical Society: Series B (Metho-dological), 1996, 58(3): 481-493.
[32] TREUTLEIN B, BROWNFIELD D G, WU A R, et al. Recon-structing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq[J]. Nature, 2014, 509(7500): 371-375.
[33] KLEIN A M, MAZUTIS L, AKARTUNA I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells[J]. Cell, 2015, 161(5): 1187-1201.
[34] SCHLITZER A, SIVAKAMASUNDARI V, CHEN J, et al.Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow[J]. Nature Immunology, 2015, 16(7): 718-728.
[35] GUILLIAMS M, GINHOUX F, JAKUBZICK C, et al. Den-dritic cells, monocytes and macrophages: a unified nomenc-lature based on ontogeny[J]. Nature Reviews Immunology, 2014, 14(8): 571-578.
[36] SUMMERS K M, BUSH S J, HUME D A. Network analysis of transcriptomic diversity amongst resident tissue macrop-hages and dendritic cells in the mouse mnonuclear phagocyte system[J]. PLoS Biology, 2020, 18(10): e3000859.
[37] HAGHVERDI L, BüTTNER M, WOLF F A, et al. Diffusion pseudotime robustly reconstructs lineage branching[J]. Nature Methods, 2016, 13(10): 845-848.
[38] WANG S, KARIKOMI M, MACLEAN A L, et al. Cell lineage and communication network inference via optimization for single-cell transcriptomics[J]. Nucleic Acids Research, 2019, 47(11): e66.
[39] SATIJA R, FARRELL J A, GENNERT D, et al. Spatial recon-struction of single-cell gene expression data[J]. Nature Bio-technology, 2015, 33(5): 495-502.
[40] CHEUNG T H, RANDO T A. Molecular regulation of stem cell quiescence[J]. Nature Reviews Molecular Cell Biology, 2013, 14(6): 329-340.
[41] CODEGA P, SILVA-VARGAS V, PAUL A, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche[J]. Neuron, 2014, 82(3): 545-559.
[42] MIZRAK D, LEVITIN H M, DELGADO A C, et al. Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages[J]. Cell Reports, 2019, 26(2): 394-406.
[43] YUZWA S A, BORRETT M J, INNES B T, et al. Develop-mental emergence of adult neural stem cells as revealed by single-cell transcriptional profiling[J]. Cell Reports, 2017, 21(13): 3970-3986.
[44] DULKEN B W, LEEMAN D S, BOUTET S C, et al. Single-cell transcriptomic analysis defines heterogeneity and trans-criptional dynamics in the adult neural stem cell lineage[J]. Cell Reports, 2017, 18(3): 777-790.
[45] BASTIDAS-PONCE A, TRITSCHLER S, DONY L, et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis[J]. Development, 2019, 146(12): 173849.
[46] BONAGUIDI M A, PENG C Y, MCGUIRE T, et al. Noggin expands neural stem cells in the adult hippocampus[J]. The Journal of Neuroscience, 2008, 28(37): 9194-9204.
[47] MIRA H, ANDREU Z, SUH H, et al. Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus[J]. Cell Stem Cell, 2010, 7(1): 78-89.
[48] PETRYNIAK M A, POTTER G B, ROWITCH D H, et al. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain[J]. Neuron, 2007, 55(3): 417-433.
[49] SUH Y, OBERNIER K, H?LZL-WENIG G, et al. Interaction between DLX2 and EGFR regulates proliferation and neuro-genesis of SVZ precursors[J]. Molecular and Cellular Neuro-science, 2009, 42(4): 308-314.
[50] MORIZUR L, CHICHEPORTICHE A, GAUTHIER L R, et al. Distinct molecular signatures of quiescent and activated adult neural stem cells reveal specific interactions with their micro-environment[J]. Stem Cell Reports, 2018, 11(2): 565-577.
[51] 秦尚尧. 拓扑异构酶Ⅱa在小鼠SVZ成体神经发生过程中的作用和机制研究[D]. 上海: 中国人民解放军海军军医大学, 2019.
QIN S Y. The role and mechanism of topoisomerase Ⅱ in a the adult neurogenesis in mouse SVZ[D]. Shanghai: Naval Medical Univeristy, 2019.
[52] CAHOY J D, EMERY B, KAUSHAL A, et al. A transcrip-tome database for astrocytes, neurons, and oligodendroc-ytes: a new resource for understanding brain development and function[J]. Journal of Neuroscience, 2008, 28(1): 264-278. |