[1] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 121-144.
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 121-144.
[2] 邵俊健, 王士同. 具有抗噪性能适用高维数据的增量式聚类算法[J]. 计算机科学与探索, 2019, 13(9): 1553-1566.
SHAO?J J,?WANG?S T. Incremental clustering algorithm with anti-noise performance and suitable for high dimensional data[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1553-1566.
[3] ZHANG C F, FANG Z Y. An improved k-means clustering algorithm[J]. Journal of Information and Computational Science, 2013, 10(1): 193-199.
[4] BRADLEY P S, MANGASARIAN O L. K-plane clustering [J]. Journal of Global Optimization, 2000, 16(1): 23-32.
[5] LIU L M, GUO Y R, WANG Z, et al. K-proximal plane clustering[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(5): 1537-1554.
[6] WANG Z, SHAO Y H, BAI L, et al. Twin support vector machine for clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2583-2588.
[7] WANG Z, CHEN X, SHAO Y H, et al. Ramp-based twin support vector clustering[J]. Neural Computing and Applications, 2019, 32: 1-12.
[8] WANG Z, SHAO Y H, BAI L, et al. General plane-based clustering with distribution loss[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(9): 3880-3893.
[9] TANVEER M, SHARMA A, SUGANTHAN P N. General twin support vector machine with pinball loss function[J]. Information Sciences, 2019, 494: 311-327.
[10] BALASUNDARAM S, PRASAD S C. Robust twin support vector regression based on huber loss function[J]. Neural Computing and Applications, 2020, 32: 11285-11309.
[11] 王华军, 修乃华. 支持向量机损失函数分析[J]. 数学进展, 2021, 50(6): 1-28.
WANG H J, XIU N H. Support vector machine based on loss function analysis[J]. Mathematical Progress, 2021, 50(6): 1-28.
[12] TANVEER M, GUPTA T, SHAH M. Pinball loss twin support vector clustering[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17: 1-23.
[13] TANVEER M, GUPTA T, SHAH M. Spare twin support vector clustering using pinball loss[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(10): 3776-3783.
[14] LAROSE D T. K-nearest neighbor algorithm[M]//Discovering Knowledge in Data: An Introduction to Data Mining. Hoboken: John Willey & Sons, Inc., 2005: 90-106.
[15] DEM?AR J. Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7: 1-30. |