[1] AV-TEST. Malware[EB/OL]. [2023-02-10]. https://www.avtest. org/en/statistics/malware/.
[2] MOURTAJI Y, BOUHORMA M, ALGHAZZAWI D. Intelligent framework for malware detection with convolutional neural network[C]//Proceedings of the 2nd International Conference on Networking, Rabat, Mar 28-29, 2019. New York: ACM, 2019.
[3] XIAO M, GUO C, SHEN G, et al. Image-based malware classification using section distribution information[J]. Computers & Security, 2021: 102420.
[4] KALASH M, ROCHAN M, MOHAMMED N, et al. Malware classification with deep convolutional neural networks[C]//Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security, Paris, Feb 26-28, 2018. Piscataway: IEEE, 2018.
[5] DAI Y, LI H, QIAN Y, et al. A malware classification method based on memory dump grayscale image[J]. Digital Investigation, 2018, 27: 30-37.
[6] KANCHERLA K, MUKKAMALA S. Image visualization based malware detection[C]//Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Cyber Security, Singapore, Apr 16-19, 2013. Piscataway: IEEE, 2013: 40-44.
[7] NAEEM H, GUO B, ULLAH F, et al. A cross-platform malware variant classification based on image representation[J]. KSII Transactions on Internet and Information Systems, 2019, 13(7): 3756-3777.
[8] XIN Z, PANG J, LIANG G. Image classification for malware detection using extremely randomized trees[C]//Proceedings of the 2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification, Xiamen, Oct 27-29, 2017. Piscataway: IEEE, 2017: 54-59.
[9] GU S, CHENG S, ZHANG W. From image to code: executable adversarial examples of android applications[C]//Proceedings of the 2020 6th International Conference on Computing and Artificial Intelligence, Tianjin, Apr 23-26, 2020. New York: ACM, 2020: 261-268.
[10] PENG X, XIAN H, LU Q, et al. Semantics aware adversarial malware examples generation for black-box attacks[J]. App-lied Soft Computing, 2021, 109(3): 107506.
[11] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[J]. arXiv:1412.6572, 2014.
[12] SU J, VARGAS D V, SAKURAI K. One pixel attack for fooling deep neural networks[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(5): 828-841.
[13] KUCUK Y, YAN G. Deceiving portable executable malware classifiers into targeted misclassification with practical adversarial examples[C]//Proceedings of the 10th ACM Conference on Data and Application Security and Privacy, New Orleans, Mar 16-18, 2020. New York: ACM, 2020: 341-352.
[14] LIU X, ZHANG J, LIN Y, et al. ATMPA: attacking machine learning-based malware visualization detection methods via adversarial examples[C]//Proceedings of the International Symposium on Quality of Service, Phoenix, Jun 24-25, 2019. New York: ACM, 2019: 1-10.
[15] VI B N, NGUYEN H N, NGUYEN N T, et al. Adversarial examples against image-based malware classification systems[C]//Proceedings of the 2019 11th International Conference on Knowledge and Systems Engineering, Da Nang, Oct 24-26, 2019. Piscataway: IEEE, 2019: 1-5.
[16] SUCIU O, COULL S E, JOHNS J. Exploring adversarial examples in malware detection[C]//Proceedings of the 2019 IEEE Security and Privacy Workshops, San Francisco, May 19-23, 2019. Piscataway: IEEE, 2019: 8-14.
[17] Vxheaven. Vxheaven[EB/OL]. [2022-08-01]. https://web. archive.org/web/20170611163424/http://vxheaven.org/.
[18] Virusshare. Virusshare[EB/OL]. [2022-08-02]. https://viruss-hare.com/.
[19] NARAYANAN B N, DJANEYE-BOUNDJOU O, KEBEDE T M. Performance analysis of machine learning and pattern recognition algorithms for Malware classification[C]//Proceedings of the 2016 IEEE National Aerospace and Electronics Conference and Ohio Innovation Summit, Dayton, Jul 25-29, 2016. Piscataway: IEEE, 2016: 338-342.
[20] DAVULURU V S P, NARAYANAN B N, BALSTER E J. Convolutional neural networks as classification tools and feature extractors for distinguishing malware programs[C]// Proceedings of the 2019 IEEE National Aerospace and Electronics Conference, Dayton, Jul 15-19, 2019. Piscataway: IEEE, 2019: 273-278.
[21] 肖茂, 郭春, 申国伟, 等. 可保留可用性和功能性的对抗样本[J]. 计算机科学与探索, 2022, 16(10): 2286-2297.
XIAO M, GUO C, SHEN G W, et al. Adversarial example remaining availability and functionality[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2286-2297.
[22] CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy, San Jose, May 22-26, 2017. Piscataway: IEEE, 2017: 39-57.
[23] KHORMALI A, ABUSNAINA A, CHEN S, et al. From blue-sky to practical adversarial learning[C]//Proceedings of the 2020 2nd IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications, Atlanta, Oct 28-31, 2020. Piscataway: IEEE, 2020: 118-127.
[24] GOODFELLOW I, PAPERNOT N, MCDANIEL P, et al. Cleverhans v0.1: an adversarial machine learning library[J]. arXiv:1610.00768, 2016.
[25] 徐晓静, 徐向阳, 梁海华, 等. PE文件资源节的信息隐藏研究与方案实现[J]. 计算机应用, 2007, 27(3): 621-623.
XU X J, XU X Y, LIANG H H, et al. Information hiding scheme based on PE file resources section[J]. Journal of Computer Applications, 2007, 27(3): 621-623.
[26] TIAN Z W, YANG H F. Code fusion information-hiding algorithm based on PE file function migration[J]. EURASIP Journal on Image and Video Processing, 2021, 2021: 1-12.
[27] Microsoft. Microsoft[EB/OL]. [2022-08-09]. https://learn. microsoft.com/zh-cn/windows/win32/debug/pe-format/.
[28] KHORMALI A, ABUSNAINA A, CHEN S, et al. COPYCAT: practical adversarial attacks on visualization-based malware detection[J]. arXiv:1909.09735, 2019. |