[1] 赵梦媛, 黄晓雯, 桑基韬, 等. 对话推荐算法研究综述[J]. 软件学报, 2022,?33(12):?4616-4643.
ZHAO M Y, HUANG X W, SANG J T, et al. Survey on conversational recommendation algorithms[J]. Journal of Software, 2022, 33(12): 4616-4643.
[2] ZANG T Z, ZHU Y M, LIU H B, et al. A survey on cross-domain recommendation: taxonomies, methods, and future directions[J]. ACM Transactions on Information Systems,2023, 41(2): 1-39.
[3] WANG D, LIANG Y, XUD, et al. A content-based recommender system for computer science publication[J]. Knowledge-Based Systems, 2018, 157: 1-9.
[4] REDDY S R S, NALLURI S, KUNISETI S, et al. Content-based movie recommendation system using genre correlation[M]//Smart Intelligent Computing and Applications. Singapore: Springer, 2019: 391-397.
[5] FU M, QU H, YI Z, et al. A novel deep learning-based collaborative filtering model for recommendation system[J].IEEE Transactions on Cybernetics, 2018, 49(3): 1084-1096.
[6] XUE F, HE X, WANG X, et al. Deep item-based collaborative filtering for top-n recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): 1-25.
[7] WU D. Music personalized recommendation system based on hybrid filtration[C]//Proceedings of the 2019 International Conference on Intelligent Transportation Big Data and Smart City. Piscataway: IEEE, 2019: 430-433.
[8] DHRUV A, KAMATH A, POWAR A, et al. Artist recommendation system using hybrid method:a novel approach[M]//Emerging Research in Computing, Information, Communication and Applications. Singapore: Springer, 2019: 527-542.
[9] BANDYOPADHYAY S, THAKUR S S. Product prediction and recommendation in e-commerce using collaborative filtering and artificial neural networks: a hybrid approach[M]//Intelligent Computing Paradigm: Recent Trends. Singapore: Springer, 2020: 59-67.
[10] 任豪, 刘柏嵩, 孙金杨. 面向知识迁移的跨领域推荐算法研究进展[J]. 计算机科学与探索, 2020, 14(11): 1813-1827.
REN H, LIU B S, SUN J Y. Advances and perspectives on knowledge transfer based cross-domain recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1813-1827.
[11] 陶鸿, 吴国栋, 孙成, 等. 跨领域推荐研究进展[J]. 长春师范大学学报, 2019, 38(12): 44-54.
TAO H, WU G D, SUN C, et al. Research progress in cross-domain recommendation[J]. Journal of Changchun Normal University, 2019, 38(12): 44-54.
[12] ZHU F, WANG Y, CHEN C C, et al. A deep framework for cross-domain and cross-system recommendations[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3711-3717.
[13] KANG S K, HWANG J Y, LEE D H, et al. Semi-supervised learning for cross-domain recommendation to cold-start users[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1563-1572.
[14] ZHU Y C, GE K K, ZHUANG F Z, et al. Transfer-meta framework for cross-domain recommendation to cold-start users[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1813-1817.
[15] ZHU Y C, TANG Z W, LIU Y D, et al. Personalized transfer of user preferences for cross-domain recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 1507-1515.
[16] WANG T X, ZHUANG F Z, ZHANG Z Q, et al. Low-dimensional alignment for cross-domain recommendation[C]//Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 3508-3512.
[17] 孙爱晶, 王国庆. 邻居关系感知的图卷积网络推荐模型[J]. 计算机工程与应用, 2023, 59(9): 112-122.
SUN A J, WANG G Q. Neighbor relation-aware graph convolutional network for recommendation[J]. Computer Engineering and Applications, 2023, 59(9): 112-122.
[18] KIPF T N, WELLING M. Semi-supervised classifification with graph convolutional networks[EB/OL]. [2023-03-21].https://arxiv.org/abs/1609.02907v4.
[19] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 2019 ACM International Conference on Research on Development in Information Retrieval. New York: ACM, 2019: 165-174.
[20] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2018: 974-983.
[21] CAO J X, SHENG J W, CONG X, et al. Cross-domain recommendation to cold-start users via variational information bottleneck[EB/OL]. [2023-03-12]. https://arxiv.org/abs/2203.16863v1.
[22] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//Proceedings of the 2014 International Conference on Learning Representations, Banff, Apr 14-16, 2014.
[23] ZHONG S T, WANG C D, LAI J H, et al. An autoencoder framework with attention mechanism for cross-domain recommendation[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 5229-5241.
[24] HAO X B, LIU Y D, XIE R B, et al. Adversarial feature translation for multi-domain recommendation[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 2964-2973.
[25] HE M, ZHANG J L, YANG P, et al. Robust transfer learning for cross-domain collaborative filtering using multiple rating patterns approximation[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. New York: ACM, 2018: 225-233.
[26] HU G N, ZHANG Y, YANG Q. CoNet: collaborative cross networks for cross-domain recommendation[C]//Proceedings of the 2018 ACM Conference on Information and Knowledge Management. New York: ACM, 2018: 667-676.
[27] GAO C, CHEN X N, FENG F L, et al. Cross-domain recommendation without sharing user-relevant data[C]//Proceed-ings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 491-502.
[28] LI P, TUZHILIN A. DDTCDR: deep dual transfer cross domain recommendation[C]//Proceedings of the 13th ACM International Conference on Web Search and Data Mining. New York: ACM, 2020: 331-339.
[29] ZHANG Y N, LIU Y, HAN P, et al. Learning personalized itemset mapping for cross-domain recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, Yokohama, Jul 2020: 2561-2567.
[30] ZHAO C, LI C L, XIAO R, et al. CATN: cross-domain recommendation for cold-start users via aspect transfer network[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 229-238.
[31] MAN T, SHEN H W, JIN X L, et al. Cross-domain recommendation: an embedding and mapping approach[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2464-2470.
[32] PAN W K, XIANG E W, LIU N N, et al. Transfer learning in collaborative filtering for sparsity reduction[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence.Menlo Park: AAAI, 2010: 230-235.
[33] FU W J, PENG Z H, WANG S Z, et al. Deeply fusing reviews and contents for cold start users in cross-domain recommendation systems[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2019: 94-101.
[34] BACHMAN P, HJELM R D, BUCHWALTER W. Learning representations by maximizing mutual information across views[C]//Advances in Neural Information Processing Systems 32, Vancouver, Dec 8-14, 2019: 15509-15519.
[35] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-03-12]. https://arxiv.org/abs/1810.04805.
[36] ZHOU K, WANG H, ZHAO W X, et al. S3-Rec: self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1893-1902.
[37] XIE X, SUN F, LIU Z, et al. Contrastive pre-training for sequential recommendation[EB/OL]. [2023-03-12]. https://arxiv.org/abs/2010.14395.
[38] 王永贵, 赵晓暄. 结合自监督学习的图神经网络会话推荐[J]. 计算机工程与应用, 2023, 59(3): 244-252.
WANG Y G, ZHAO X X. Self-supervised graph neural networks for session-based recommendation[J]. Computer Engineering and Applications, 2023, 59(3): 244-252.
[39] XIA X, YIN H, YU J, et al. Self-supervised hypergraph convolutional networks for session-based recommendation[C]//Proceedings of the 2021 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2021: 4503-4511.
[40] VELICKOVIC P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[41] 申翔翔, 侯新文, 尹传环. 深度强化学习中状态注意力机制的研究[J]. 智能系统学报, 2020, 15(2): 317-322.
SHEN X X, HOU X W, YIN C H. State attention in deep reinforcement learning[J]. CAAI Transactions on Intelligent Systems, 2020, 15(2): 317-322.
[42] 高芬, 苏依拉, 牛向华, 等. 基于Transformer的蒙汉神经机器翻译研究[J]. 计算机应用与软件, 2020, 37(2): 141-146.
GAO F, SU Y L, NIU X H, et al. Research on Mongolian Chinese neural machine translation based on Transformer[J]. Computer Applications and Software, 2020, 37(2): 141-146.
[43] CHAUDHARI S, POLATKAN G, RAMANATH R, et al. An attentive survey of attention[EB/OL]. [2023-03-12]. https://arxiv.org/pdf/1904.02874.pdf.
[44] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(S1): 1-6.
REN H, WANG X G. Overview of attention mechanism[J].Journal of Computer Applications, 2021, 41(S1): 1-6.
[45] SONG W P, SHI C C, XIAO Z P, et al. AutoInt: automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. Menlo Park: AAAI, 2019: 1161-1170.
[46] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[47] DENG Z H, HUANG L, WANG C D, et al. DeepCF: a unified framework of representation learning and matching function learning in recommender system[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Menlo Park: AAAI, 2019: 61-68.
[48] XI W D, HUANG L, WANG C D, et al. BPAM: recommendation based on BP neural network with attention mechanism[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3905-3911.
[49] HU L, CAO J, XU G, et al. Personalized recommendation via cross-domain triadic factorization[C]//Proceedings of the 22nd International World Wide Web Conference, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 595-606.
[50] SAHU A K, DWIVEDI P. Matrix factorization in cross-domain recommendations framework by shared users latent factors[J]. Computer Journal, 2018, 143(1): 387-394.
[51] ELKAHKY A M, SONG Y, HE X. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 278-288.
[52] YUAN F, YAO L, BENATALLAH B. DARec: deep domain adaptation for cross-domain recommendation via transferring rating patterns[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 4227-4233. |