[1] MOUSAVI E, SEHHATI M. A generalized multi-aspect distance metric for mixed-type data clustering[J]. Pattern Recognition, 2023, 138: 109353.
[2] SHU X, YE Y. Knowledge discovery: methods from data mining and machine learning[J]. Social Science Research, 2023, 110: 102817.
[3] LAVANYA P G, KOUSER K, SURESHA M. Effective feature representation using symbolic approach for classification and clustering of big data[J]. Expert Systems with Applications, 2021, 173: 114658.
[4] LIU P, YUAN W, FU J, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural laguage processing[J]. ACM Computing Surveys, 2023, 55(9): 1-35.
[5] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索,2022, 16(9): 1990-2010.
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010.
[6] ZHU C, ZHANG Q, CAO L, et al. Mix2vec: unsupervised mixed data representation[C]//Proceedings of the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, Sydney, Oct 6-9, 2020. Piscataway: IEEE, 2020: 118-127.
[7] DUAN B B, HAN L X, GOU Z N, et al. Clustering mixed data based on density peaks and stacked denoising autoencoders[J]. Symmetry, 2019, 11(2): 163.
[8] MENON R, NAIR S S, SRINDHYA K, et al. Sparsity-based representation for categorical data[C]//Proceedings of the 2013 IEEE Recent Advances in Intelligent Computational Systems, Trivandrum, Dec 19-21, 2013. Piscataway: IEEE, 2013: 74-79.
[9] CARRIZOSA E, RESTREPO M G, MORALES D R. On clustering categories of categorical predictors in generalized linear models[J]. Expert Systems with Applications, 2021, 182: 115245.
[10] 孙影影, 贾振堂, 朱昊宇. 多模态深度学习综述[J]. 计算机工程与应用,2020, 56(21): 1-10.
SUN Y Y, JIA Z T, ZHU H Y. Survey of multimodal deep learning[J]. Computer Engineering and Applications, 2020, 56(21): 1-10.
[11] JISHAN S T, RASHU R I, HAQUE N, et al. Improving accuracy of students’ final grade prediction model using optimal equal width binning and synthetic minority over-sampling technique[J]. Decision Analytics, 2015, 2: 1-25.
[12] ZHANG R, XIONG S, CHEN Z. Construction method of concept lattice based on improved variable precision rough set[J]. Neurocomputing, 2016, 188: 326-338.
[13] BIBA M, ESPOSITO F, FERILLI S, et al. Unsupervised discretization using kernel density estimation[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence, Hyderabad, Jan 6-12, 2007: 696-701.
[14] GAO C, ZHANG Y, LO D, et al. Improving the machine learning prediction accuracy with clustering discretization[C]//Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, Las Vegas, Jan 26-29, 2022. Piscataway: IEEE, 2022: 513-517.
[15] HANCOCK J T, KHOSHGOFTAAR T M. Survey on categorical data for neural networks[J]. Journal of Big Data, 2020, 7(1): 1-41.
[16] LI Q, JI S, HU S, et al. A multi-view deep metric learning approach for categorical representation on mixed data[J]. Knowledge-Based Systems, 2023, 260: 110161.
[17] GAO X, WU S, ZHOU W. NECA: network-embedded deep representation learning for categorical data[EB/OL]. [2023-02-23]. https://arxiv.org/abs/2205.12752.
[18] GUO W, WANG J, WANG S. Deep multimodal representation learning: a survey[J]. IEEE Access, 2019, 7: 63373-63394.
[19] NGIAM J, KHOSLA A, KIM M, et al. Multimodal deep learning[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue Jun 28-Jul 2, 2011: 689-696.
[20] SHEN T, JIA J, LI Y, et al. Enhancing music recommendation with social media content: an attentive multimodal auto-encoder approach[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, Jul 19-24, 2020. Piscataway: IEEE, 2020: 1-8.
[21] SIRPAL P, DAMSEH R, PENG K, et al. Multimodal autoencoder predicts fNIRS resting state from EEG signals[J]. Neuroinformatics, 2022, 20(3): 537-558.
[22] BOCK S, WEI? M. A proof of local convergence for the Adam optimizer[C]//Proceedings of the 2019 International Joint Conference on Neural networks, Budapest, Jul 14-19, 2019. Piscataway: IEEE, 2019: 1-8.
[23] JIAN S, HU L, CAO L, et al. Metric-based auto-instructor for learning mixed data representation[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3318-3325.
[24] ZHANG Y, CHEUNG Y, ZENG A. Het2Hom: representation of heterogeneous attributes into homogeneous concept spaces for categorical-and-numerical-attribute data clustering[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 1-8. |