[1] TONG X Y, SUN S L, FU M X. Adaptive weight based on overlapping blocks network for facial expression recognition[J]. Image and Vision Computing, 2022, 120: 104399.
[2] ZHANG Z Y, SUN X, LI J, et al. MAN: mining ambiguity and noise for facial expression recognition in the wild[J]. Pattern Recognition Letters,2022, 164: 23-29.
[3] 戎如意, 薛珮芸, 白静, 等. 双通道决策信息融合下的微表情识别[J]. 西安电子科技大学学报, 2022, 49(4): 127-133.
RONG R Y, XUE P Y, BAI J, et al. Micro-expression recognition based on two-channel decision information fusion[J]. Journal of Xidian University, 2022, 49(4): 127-133.
[4] 程艳, 蔡壮, 吴刚, 等. 结合自注意力特征过滤分类器和双分支GAN的面部表情识别[J]. 模式识别与人工智能, 2022, 35(3): 243-253.
CHENG Y, CAI Z, WU G, et al. Facial expression recognition combining self-attention feature filtering classifier and two-branch GAN[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 243-253.
[5] 胡敏, 胡鹏远, 葛鹏, 等. 基于面部运动单元和时序注意力机制的视频表情识别方法[J]. 计算机辅助设计与图形学学报, 2023, 35(1): 108-117.
HU M, HU P Y, GE P, et al. Video expression recognition method based on facial motion unit and temporal attention[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(1): 108-117.
[6] LIU C, HIROTA K, DAI Y P. Patch attention convolutional vision transformer for facial expression recognition with occlusion[J]. Information Sciences, 2023, 619: 781-794.
[7] MA F Y, SUN B, LI S. Facial expression recognition with visual transformers and attentional selective fusion[J]. IEEE Transactions on Affective Computing, 2023, 14(2): 1236-1248.
[8] 夏鸿斌, 李强, 刘渊. 局部与全局特征融合的方面情感分析网络模型[J]. 计算机科学与探索, 2023, 17(4): 902-911.
XIA H B, LI Q, LIU Y. Local and global feature fusion network model for aspect-based sentiment analysis[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 902-911.
[9] PAN B W, WANG S F, XIA B. Occluded facial expression recognition enhanced through privileged information[C]// Proceedings of the 27th ACM International Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019:566-573.
[10] NI R, YANG B, ZHOU X, et al. Facial expression recognition through cross-modality attention fusion[J]. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15(1): 175-185.
[11] 陈昌川, 王海宁, 黄炼, 等. 一种基于局部表征的面部表情识别算法[J]. 西安电子科技大学学报, 2021, 48(5): 100-109.
CHEN C C, WANG H N, HUANG L, et al. Facial expression recognition based on local representation[J]. Journal of Xidian University, 2021, 48(5): 100-109.
[12] WANG K, PENG X J, YANG J F, et al. Region attention networks for pose and occlusion robust facial expression recognition[J]. IEEE Transactions on Image Processing, 2020, 29: 4057-4069.
[13] JI Y L, HU Y H, YANG Y, et al. Region attention enhanced unsupervised cross-domain facial emotion recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4190-4201.
[14] 唐宏, 向俊玲, 陈海涛, 等. 多区域融合轻量级人脸表情识别网络[J]. 激光与光电子学进展, 2023, 60(6): 71-79.
TANG H, XIANG J L, CHEN H T, et al. Lightweight network based on multiregion fusion for facial expression recognition[J]. Laser & Optoelectronics Progress, 2023, 60(6): 71-79.
[15] LI Y J, LU G M, LI J X, et al. Facial expression recognition in the wild using multi-level features and attention mechanisms[J]. IEEE Transactions on Affective Computing, 2023, 14(1): 451-462.
[16] 祁欣, 袁非牛, 史劲亭, 等. 多层次特征融合网络的语义分割算法[J]. 计算机科学与探索, 2023, 17(4): 922-932.
QI X, YUAN F N, SHI J T, et al. Semantic segmentation algorithm of multi-level feature fusion network[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 922-932.
[17] LI Y, ZENG J B, SHAN S G, et al. Occlusion aware facial expression recognition using CNN with attention mechanism[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2439-2450.
[18] WADHAWAN R, GANDHI T K. Landmark-aware and part-based ensemble transfer learning network for static facial expression recognition from images[J]. IEEE Transactions on Artificial Intelligence, 2023, 4(2): 349-361.
[19] YU M J, ZHENG H C, PENG Z F, et al. Facial expression recognition based on a multi-task global-local network[J]. Pattern Recognition Letters, 2020,131(4): 166-171.
[20] ZHAO Z Q, LIU Q S, WANG S M. Learning deep global multi-scale and local attention features for facial expression recognition in the wild[J]. IEEE Transactions on Image Processing, 2021, 30: 6544-6554.
[21] HUANG Q H, HUANG C Q, WANG X Z, et al. Facial expression recognition with grid-wise attention and visual transformer[J]. Information Sciences, 2021, 580: 35-54.
[22] LIU H W, CAI H L, LIN Q C, et al. Adaptive multilayer perceptual attention network for facial expression recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(9): 6253-6265.
[23] XIAO J H, GAN C Q, ZHU Q Y, et al. CFNet: facial expression recognition via constraint fusion under multi-task joint learning network[J]. Applied Soft Computing, 2023, 141: 110312.
[24] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 11531-11539.
[25] QIAN Z Z, MU J, TIAN F. Ventral-dorsal attention capsule network for facial expression recognition[J]. Digital Signal Processing, 2023, 136: 103978.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[27] CHAUDHARI S, MITHAL V, POLATKAN G, et al. An attention survey of attention models[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(5): 1-32.
[28] 张为, 李璞. 基于注意力机制的人脸表情识别网络[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(7): 706-713.
ZHANG W, LI P. Facial expression recognition network based on attention mechanism[J]. Journal of Tianjin University (Science and Technology), 2022, 55(7): 706-713.
[29] LI S, DENG W H, DU J P. Reliable crowdsourcing and deep locality-preserving learning for unconstrained facial expression recognition[J]. IEEE Transactions on Image Processing, 2019, 28(1): 356-370.
[30] BARSOUM E, ZHANG C, FERRER C C, et al. Training deep networks for facial expression recognition with crowd-sourced label distribution[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Nov 12-16, 2016. New York: ACM, 2016: 279-283.
[31] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 618-626.
[32] GERA D, BALASUBRAMANIAN S. Landmark guidance independent spatio-channel attention and complementary context information based facial expression recognition[J]. Pattern Recognition Letters, 2021, 145: 58-66. |