[1] BOSTEL A J, SAGAR V K. Dynamic control systems for AGVs[J]. Computing & Control Engineering Journal, 1996, 7(4): 169-176.
[2] GUL F, RAHIMAN W, NAZLI A, et al. A comprehensive study for robot navigation techniques[J]. Cogent Engineering, 2019, 6: 1632046.
[3] 倪光南. 坚持信创科技自立自强建设网络强国和数字中国[J]. 信息安全研究, 2021, 7(1): 2-3.
NI G N. Adhere to information innovation technology self-reliance and self-improvement to build a strong network and digital China[J]. Journal of Information Security Research, 2021, 7(1): 2-3.
[4] LáZARO J L, GARCíA J C, MAZO M, et al. Distributed architecture for control and path planning of autonomous vehicles[J]. Microprocessors & Microsystems, 2001, 25(3): 159-166.
[5] YASUDA G. Distributed autonomous control of modular robot systems using parallel programming[J]. Journal of Materials Processing Technology, 2003, 141(3): 357-364.
[6] PADGHAM L. Developing intelligent agent systems: a practical guide[M]. John Wiley & Sons, Inc., 2004.
[7] GASCUE?A J M, FERNáNDEZ-C A. Agent-oriented modeling and development of a person-following mobile robot[J]. Expert Systems with Applications, 2011, 38(4): 4280-4290.
[8] BARBERá H M, PéREZ D H. Development of a flexible AGV for flexible manufacturing systems[J]. Industrial Robot, 2010, 37(5): 459-468.
[9] YUAN P, CHEN D, WANG T, et al. AGV system based on multi-sensor information fusion[C]//Proceedings of the 2014 International Symposium on Computer, Consumer and Control. Piscataway: IEEE, 2014.
[10] COSTLEY A, KUNZ C, SHARMA R, et al. Low cost, open-source platform to enable full-sized automated vehicle research[J]. IEEE Transactions on Intelligent Vehicles, 2020, 6(1): 3-13.
[11] TANABATA T, KODAMA K, HASHIGUCHI T, et al. Development of a plant conveyance system using an AGV and a self-designed plant-handling device: a case study of DIY plant phenotyping[J]. Breeding Science, 2022, 72(1): 85-95.
[12] SUZEN A A, DUMAN B, SEN B. Benchmark analysis of Jetson TX2, Jetson Nano and Raspberry PI using Deep-CNN[C]//Proceedings of the 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications. Piscataway: IEEE, 2020.
[13] ZHANG S, LIU J Y, DU Y F, et al. Method on automatic navigation control of tractor based on speed adaptation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 326(23): 56-63.
[14] ZHANG W Y, GAI J Y, ZHANG Z G, et al. Double-DQN based path smoothing and tracking control method for robotic vehicle navigation[J]. Computers and Electronics in Agriculture, 2019, 166: 11.
[15] LI Z Q, CHEN L Q, ZHENG Q, et al. Control of a path following caterpillar robot based on a sliding mode variable structure algorithm[J]. Biosystems Engineering, 2019, 186: 293-306.
[16] NGUYEN P T T, YAN S W, LIAO J F, et al. Autonomous mobile robot navigation in sparse LiDAR feature environments[J]. Applied Sciences, 2021, 11(13): 16.
[17] ZHAO P, CHEN J J, SONG Y, et al. Design of a control system for an autonomous vehicle based on adaptive-PID[J]. International Journal of Advanced Robotic Systems, 2012, 9: 11.
[18] MAI T A, DANG T S, DUONG D T, et al. A combined backstepping and adaptive fuzzy PID approach for trajectory tracking of autonomous mobile robots[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(3): 13.
[19] YAMASHITA A S, ALEXANDRE P M, ZANIN A C, et al. Reference trajectory tuning of model predictive control[J]. Control Engineering Practice, 2016, 50: 1-11.
[20] DEAN S, MANIA H, MATNI N, et al. On the sample complexity of the linear quadratic regulator[J]. Foundations of Computational Mathematics, 2017(5).
[21] QIAO N, WANG L, ZHU W, et al. An improved path-tracking controller with mid-angle adaptive calibration for combine harvester[J]. Journal of Instrumentation, 2020, 15(1): 16.
[22] ABDELMONIEM A, OSAMA A, ABDELAZIZ M, et al. A path-tracking algorithm using predictive Stanley lateral controller[J]. International Journal of Advanced Robotic Systems, 2020, 17(6): 11.
[23] BU X, HOU Z, CHI R. Model free adaptive iterative learning control for farm vehicle path tracking[C]//Proceedings of the 3rd IFAC International Conference on Intelligent Control and Automation Science, Chengdu, Sep 2-4, 2013: 153-158.
[24] COULTER R C. Implementation of the pure pursuit path tracking algorithm[EB/OL]. [2023-09-14]. http://dx.doi.org/.
[25] SHAN Y X, YANG W, CHEN C, et al. CF-Pursuit: a pursuit method with a clothoid fitting and a fuzzy controller for autonomous vehicles[J]. International Journal of Advanced Robotic Systems, 2015, 12: 13.
[26] ANDERSEN H, CHONG Z J, ENG Y H, et al. Geometric path tracking algorithm for autonomous driving in pedestrian environment[C]//Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics.Piscataway: IEEE, 2016: 1669-1674.
[27] SUN Q P, WANG Z H, LI M, et al. Path tracking control of wheeled mobile robot based on improved pure pursuit algorithm[C]//Proceedings of the 2019 Chinese Automation Congress. Piscataway: IEEE, 2019.
[28] CHEN I M, CHAN C Y. Deep reinforcement learning based path tracking controller for autonomous vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(2/3): 541-551.
[29] YU L L, YAN X X, KUANG Z X, et al. Driverless bus path tracking based on fuzzy pure pursuit control with a front axle reference[J]. Applied Sciences, 2020, 10(1): 19.
[30] WANG L H, CHEN Z L, ZHU W X. An improved pure pursuit path tracking control method based on heading error rate[J]. Industrial Robot, 2022, 49(5): 973-980.
[31] LI B, WANG Y Z, MA S J, et al. Adaptive pure pursuit: a real-time path planner using tracking controllers to plan safe and kinematically feasible paths[J].IEEE Transactions on Intelligent Vehicles, 2023, 8(9): 4155-4168.
[32] WU J D, REN H L, LIN T L, et al. A pure electric driverless crawler construction machinery walking method based on the fusion SLAM and improved pure pursuit algorithms[J]. Sensors, 2023, 23(18): 7784.
[33] NETTO M, BLOSSEVILLE J M, LUSETTI B, et al. A new robust control system with optimized use of the lane detection data for vehicle full lateral control under strong curvatures[C]//Proceedings of the 2006 IEEE Intelligent Transportation Systems Conference. Piscataway: IEEE, 2006: 1382-1387.
[34] ZHAO Z, ZHOU L, ZHU Q. Preview distance adaptive optimization for the path tracking control of unmanned vehicle[J]. Journal of Mechanical Engineering, 2018, 54(24): 166-173.
[35] 张华强, 王国栋, 吕云飞,等. 基于改进纯追踪模型的农机路径跟踪算法研究[J]. 农业机械学报, 2020, 51(9): 18-25.
ZHANG H Q, WANG G D, LV Y F, et al. Agricultural machinery automatic navigation control system based on improved pure tracking model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 18-25.
[36] AHN J, SHIN S, KIM M, et al. Accurate path tracking by adjusting look-ahead point in pure pursuit method[J]. International Journal of Automotive Technology, 2021, 22(1): 119-129.
[37] MACENSKI S, SINGH S, MARTíN F, et al. Regulated pure pursuit for robot path tracking[J]. Autonomous robots, 2023, 47(6): 685-694.
[38] 李魏魏, 袁森, 周小容. 基于视觉神经元PID的AGV轨迹跟踪控制器[J]. 组合机床与自动化加工技术, 2022(11): 56-61.
LI W W, YUAN S, ZHOU X X. AGV trajectory tracking controller based on visual neuron PID[J]. Combined Machine Tools and Automated Processing Technology, 2022(11): 56-61.
[39] 齐志权, 吴世南, 邹波, 等. 自动泊车路径纯跟踪算法应用研究[J]. 北京理工大学学报, 2023, 43(5): 510-516.
QI Z Q, WU S N, ZOU B, et al. Research on automatic parking path pure tracking algorithm[J]. Journal of Beijing Institute of Technology, 2023, 43(5): 510-516.
[40] OHTA H, AKAI N, TAKEUCHI E, et al. Pure pursuit revisited: field testing of autonomous vehicles in urban areas[C]//Proceedings of the 2016 IEEE 4th International Conference on Cyber-Physical Systems, Networks, and Applications. Piscataway: IEEE, 2016: 7-12. |