计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (3): 703-713.DOI: 10.3778/j.issn.1673-9418.2401036

• 图形·图像 • 上一篇    下一篇

单幅图像去雨的三阶段通道分割密集融合网络

张书婷,王长月,王长忠,冷强奎   

  1. 1. 渤海大学 数学科学学院,辽宁 锦州 121000
    2. 辽宁工程技术大学 电气与控制工程学院,辽宁 葫芦岛 125000
  • 出版日期:2025-03-01 发布日期:2025-02-28

Three-Stage Channel Split Dense Fusion Network for Single Image Deraining

ZHANG Shuting, WANG Changyue, WANG Changzhong, LENG Qiangkui   

  1. 1. College of Mathematics and Science, Bohai University, Jinzhou, Liaoning 121000, China
    2. School of Electrical and Control Engineering, Liaoning Technical University, Huludao, Liaoning 125000, China
  • Online:2025-03-01 Published:2025-02-28

摘要: 单幅图像的雨纹去除是图像处理中的一个挑战。一种有效的单幅图像去雨算法可以显著提高恶劣天气条件下的图像质量。现有的去雨算法往往参数较多,并且随着网络层数的不断增加,图像特征的提取出现冗余,严重影响去雨的效果以及背景的细节信息。因此,提出了一种三阶段通道分割密集融合网络(TCSDFNet)以获得更好的去雨性能。在网络中采用多个通道分割模块(CSB)进行密集特征融合,来聚集雨纹的高、低级别特征。CSB采用通道分割操作将雨天图像分割成多个通道,根据不同层次的特征应用不同的雨纹去除方法,减少冗余特征和网络参数,提高模型的表现能力和计算效率。同时提出了一种残差双注意模块(RDAB),将它应用在通道分割之后,保证雨纹被去除时背景图像不被破坏或模糊。由于雨纹之间存在较强的相关性,网络采取三阶段的学习策略,以便更好地捕捉雨纹在图像中的分布。TCSDFNet将去雨网络中的参数数量大大减少,更全面地提取了不同层次的雨纹特征,并在更大程度上减少背景图像细节的丢失。在合成数据集和真实数据集上的大量实验表明,所提出的网络实现了良好的去雨效果。

关键词: 雨纹, 通道分割, 图像去雨

Abstract: Single image deraining is a considerable challenge in the domain of image processing. The enhancement of image quality under adverse weather conditions heavily relies on the development of efficient single image rain streaks removal algorithms. However, prevailing rain streaks removal algorithms often suffer from an abundance of parameters. Furthermore, as the number of network layers increases, the extraction of image features tends to become redundant, detrimentally impacting both the efficacy of rain streaks removal and the preservation of background details. Therefore, a three-stage channel split dense fusion network (TCSDFNet) is proposed to obtain better rain removal performance. Specifically, multiple channel split blocks (CSB) are used in the network for dense feature fusion to gather the high and low level features of the rain streaks. CSB uses channel split operation to split the rainy image into multiple channels, and applies different rain streaks removal methods according to different levels of features to reduce redundant features and network parameters, and improve the performance ability and computational efficiency of the model. At the same time, the residual dual attention block (RDAB) is proposed, which is applied to the channel split to ensure that the background image will not be destroyed or blurred when the rain streaks are removed. In addition, due to the strong correlation between rain streaks, the network adopts a three-stage learning strategy in order to better capture the distribution of rain streaks in the image. TCSDFNet greatly reduces the number of parameters in the rain removal network, extracts the features of different levels more comprehensively, and reduces the loss of background image detail to a greater extent. A large number of experiments on synthetic datasets and real datasets show that the proposed network achieves good rain removal effect.

Key words: rain striations, channel segmentation, image deraining