[1] DENG S, WEI M Q, WANG J, et al. Detail-recovery image deraining via context aggregation networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14548-14557.
[2] HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[3] SHAO Z F, WANG L G, WANG Z Y, et al. Saliency-aware convolution neural network for ship detection in surveillance video[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 30(3): 781-794.
[4] LIU H H, SHU N, TANG Q L, et al. Computational model based on neural network of visual cortex for human action recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5): 1427-1440.
[5] PRASAD D K, RAJAN D, RACHMAWATI L, et al. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 1993-2016.
[6] HUANG D A, KANG L W, WANG Y F, et al. Self-learning based image decomposition with applications to single image denoising[J]. IEEE Transactions on Multimedia, 2013, 16(1): 83-93.
[7] KANG L W, LIN C W, FU Y H. Automatic single-image-based rain streaks removal via image decomposition[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1742-1755.
[8] ZHANG H, PATEL V M. Convolutional sparse and low-rank coding-based rain streak removal[C]//Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2017: 1259-1267.
[9] LI Y, TAN R T, GUO X J, et al. Rain streak removal using layer priors[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2736-2744.
[10] FU X Y, HUANG J B, DING X H, et al. Clearing the skies: a deep network architecture for single-image rain removal[J]. IEEE Transactions on Image Processing, 2017, 26(6): 2944-2956.
[11] ZHENG Y P, YU X, ZHANG S L, et al. Residual multiscale based single image deraining[C]//Proceedings of the 30th British Machine Vision Conference 2019, 2019: 147.
[12] YASARLA R, PATEL V M. Uncertainty guided multi-scale residual learning-using a cycle spinning CNN for single image de-raining[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8397-8406.
[13] QUE Y, LI S L, LEE H J. Attentive composite residual network for robust rain removal from single images[J]. IEEE Transactions on Multimedia, 2020, 23: 3059-3072.
[14] FAN Z W, WU H F, FU X Y, et al. Residual-guide network for single image deraining[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 1751-1759.
[15] REN D W, ZUO W M, HU Q H, et al. Progressive image deraining networks: a better and simpler baseline[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3932-3941.
[16] REN D W, SHANG W, ZHU P F, et al. Single image deraining using bilateral recurrent network[J]. IEEE Transactions on Image Processing, 2020, 29: 6852-6863.
[17] SHARMA S, TANG B, BALL J E, et al. Recursive multi-scale image deraining with sub-pixel convolution based feature fusion and context aggregation[J]. IEEE Access, 2020, 8: 177495-177505.
[18] LI M Y, WANG Y F, WANG C. Recursive residual atrous spatial pyramid pooling network for single image deraining[J]. Signal Processing: Image Communication, 2021, 99: 116430.
[19] PAN X M, YANG Y T, YANG C S, et al. Two-stage fusion model for heavy rain removal on single image[J]. Journal of Physics: Conference Series, 2021(1): 012041.
[20] CAO M, GAO Z, RAMESH B, et al. A two-stage density-aware single image deraining method[J]. IEEE Transactions on Image Processing, 2021, 30: 6843-6854.
[21] ZHANG H, PATEL V M. Density-aware single image de-raining using a multi-stream dense network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 695-704.
[22] QIAN R, TAN R T, YANG W H, et al. Attentive generative adversarial network for raindrop removal from a single image[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2482-2491.
[23] WEI Y Y, ZHANG Z, WANG Y, et al. DerainCycleGAN: rain attentive CycleGAN for single image deraining and rainmaking[J]. IEEE Transactions on Image Processing, 2021, 30: 4788-4801.
[24] CAO M, GAO Z, RAMESH B, et al. Single image deraining integrating physics model and density-oriented conditional GAN refinement[J]. IEEE Signal Processing Letters, 2021, 28: 1635-1639.
[25] YE Y T, CHANG Y, ZHOU H Y, et al. Closing the loop: joint rain generation and removal via disentangled image translation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2053-2062.
[26] ZHAO J, XIE J Y, XIONG R Q, et al. Pyramid convolutional network for single image deraining[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 9-16.
[27] FU X Y, LIANG B R, HUANG Y, et al. Lightweight pyramid networks for image deraining[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 1794-1807.
[28] JIANG K, WANG Z Y, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8343-8352.
[29] HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 2024-2032.
[30] PRAJAPATI K, CHUDASAMA V, PATEL H, et al. Channel split convolutional neural network (ChaSNet) for thermal image super-resolution[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4363-4372.
[31] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1026-1034.
[32] YANG W H, TAN R T, FENG J S, et al. Deep joint rain detection and removal from a single image[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1685-1694.
[33] FU X Y, HUANG J B, ZENG D L, et al. Removing rain from single images via a deep detail network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1715-1723.
[34] LI X, WU J L, LIN Z C, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 262-277.
[35] YANG Y Z, LU H. Single image deraining using a recurrent multi-scale aggregation and enhancement network[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 1378-1383.
[36] CHAI G Q, WANG Z B, GUO G D, et al. Recurrent attention dense network for single image de-raining[J]. IEEE Access, 2020, 8: 111278-111288.
[37] ZHANG Y, ZHANG J, HUANG B, et al. Single-image deraining via a recurrent memory unit network[J]. Knowledge-Based Systems, 2021, 218: 106832.
[38] TANG Q F, YANG J, LIU H B, et al. Single image deraining using context aggregation recurrent network[J]. Journal of Visual Communication and Image Representation, 2021, 75: 103039.
[39] ZHANG H, XIE Q Q, LU B, et al. Dual attention residual group networks for single image deraining[J]. Digital Signal Processing, 2021, 116: 103106.
[40] LI P P, JIN J Y, JIN G Y, et al. Deep scale-space mining network for single image deraining[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4275-4284.
[41] XIAO J, FU X Y, LIU A P, et al. Image de-raining transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12978-12995.
[42] LI Y F, LU J Y, CHEN H M, et al. Dilated convolutional transformer for high-quality image deraining[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 4199-4207.
[43] ZHOU W N, YE L H, WANG X. Residual contextual hourglass network for single-image deraining[J]. Neural Processing Letters, 2024, 56(2): 63.
[44] ZAMIR S W, ARORA A, KHAN S, et al. Multi-stage progressive image restoration[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14816-14826.
[45] WANG Z, WANF C, SU Z X, et al. Dense feature pyramid grids network for single image deraining[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 2025-2029.
[46] WEN Y B, GAO T, ZHANG J, et al. From heavy rain removal to detail restoration: a faster and better network[J]. Pattern Recognition, 2024, 148: 110205. |