[1] SALAH H S, GOLDIN S E, REZGUI A, et al. What is a remote sensing change detection technique? Towards a conceptual framework[J]. International Journal of Remote Sen-sing, 2020, 41(5): 1788-1812.
[2] WILLIS K S. Remote sensing change detection for ecological monitoring in United States protected areas[J]. Biological Conservation, 2015, 182: 233-242.
[3] HEGAZY I R, KALOOP M R. Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt[J]. International Journal of Sustainable Built Environment, 2015, 4(1): 117-124.
[4] QIN D, ZHOU X M, ZHOU W Y, et al. MSIM: a change detection framework for damage assessment in natural disasters[J]. Expert Systems with Applications, 2018, 97: 372-383.
[5] HUSSAIN M, CHEN R, CHENG A, et al. Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106.
[6] HU P C, CHEN S B, HUANG L L, et al. Road extraction by multiscale deformable transformer from remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
[7] WANG K, HAN L, LI L Z, et al. A decoupled search deep network framework for high-resolution remote sensing image classification[J]. Remote Sensing Letters, 2023, 14(3): 243-253.
[8] CAI Y Y, LIAO S H, HE W X, et al. CSANet: a channel-spatial attention network for remote sensing image change detection[J]. International Journal of Remote Sensing, 2023, 44(19): 5936-5959.
[9] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a “siamese” time delay neural network[C]// Advances in Neural Information Processing Systems 6. San Francisco: Morgan Kaufmann, 1994: 737-744.
[10] WEI H, CHEN R, YU C, et al. BASNet: a boundary-aware siamese network for accurate remote-sensing change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[11] ZHANG M X, LIU Z, FENG J, et al. Remote sensing image change detection based on deep multi-scale multi-attention siamese transformer network[J]. Remote Sensing, 2023, 15(3): 842.
[12] SUN X H, FU B W, JIANG X Y, et al. SOAT-UNET: a transformer-based siamese over-attention network for change detection[J]. Signal Image and Video Processing, 2023, 17(8): 4275-4283.
[13] YANG H P, CHEN Y Y, WU W, et al. A lightweight siamese neural network for building change detection using remote sensing images[J]. Remote Sensing, 2023, 15(4): 928.
[14] ZHOU H P, SONG M L, SUN K L. A full-scale feature fusion siamese network for remote sensing change detection[J]. Electronics, 2023, 12(1): 35-41.
[15] WANG M Y, TAN K, JIA X P, et al. A deep siamese network with hybrid convolutional feature extraction module for change detection based on multi-sensor remote sensing images[J]. Remote Sensing, 2020, 12: 205.
[16] ZHANG C X, YUE P, TAPETE D, et al. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 183-200.
[17] DU T Y, MING D P, GU H Y, et al. ESDSCNet: an enhanced shallow feature difference and semantic context network for remote sensing change detection: with building change detection as a case[J]. International Journal of Remote Sensing, 2023, 44(12): 3726-3752.
[18] QIAO H, LIU S, XU Q Z, et al. Two-stream convolutional neural network for video action recognition[J]. KSII Transactions on Internet and Information Systems, 2021, 15(10): 3668-3684.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[20] LEBEDEV M, VIZILTER Y V, VYGOLOV O, et al. Change detection in remote sensing images using conditional adversarial networks[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, 42: 565-571.
[21] CHEN H, SHI Z W. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 1662.
[22] DAUDT R C, SAUX B L, BOULCH A. Fully convolutional siamese networks for change detection[C]//Proceedings of the 2018 25th IEEE International Conference on Image Processing, Oct 7-10, 2018. Piscataway: IEEE, 2018: 4063-4067.
[23] FANG S, LI K Y, SHAO J Y, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[24] CHEN H, QI Z P, SHI Z W. Remote sensing image change detection with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5607514.
[25] LEI T, GENG X Z, NING H L, et al. Ultralightweight spatial-spectral feature cooperation network for change detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 4402114.
[26] XU X T, YANG Z, LI J J. AMCA: attention-guided multiscale context aggregation network for remote sensing image change detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5908619.
[27] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 618-626. |