[1] WAN Z Y, XIA X, HASSAN A E, et al. Perceptions, expectations, and challenges in defect prediction[J]. IEEE Transactions on Software Engineering, 2020, 46(11): 1241-1266.
[2] KAMEI Y, SHIHAB E. Defect prediction: accomplishments and future challenges[C]//Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering. Piscataway: IEEE, 2016: 33-45.
[3] PALOMBA F, ZANONI M, FONTANA F A, et al. Toward a smell-aware bug prediction model[J]. IEEE Transactions on Software Engineering, 2019, 45(2): 194-218.
[4] TRAUTSCH A, HERBOLD S, GRABOWSKI J. Static source code metrics and static analysis warnings for fine-grained just-in-time defect prediction[C]//Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution. Piscataway: IEEE, 2020: 127-138.
[5] KAMEI Y, SHIHAB E, ADAMS B, et al. A large-scale empirical study of just-in-time quality assurance[J]. IEEE Transactions on Software Engineering, 2013, 39(6): 757-773.
[6] KAMEI Y, FUKUSHIMA T, MCINTOSH S, et al. Studying just-in-time defect prediction using cross-project models[J]. Empirical Software Engineering, 2016, 21(5): 2072-2106.
[7] GONG L N, RAJBAHADUR G K, HASSAN A E, et al. Revisiting the impact of dependency network metrics on software defect prediction[J]. IEEE Transactions on Software Engineering, 2022, 48(12): 5030-5049.
[8] REBRO D A, CHREN S, ROSSI B, et al. Source code metrics for software defects prediction[C]//Proceedings of the 38th ACM/SIGAPP Symposium on Applied Computing. New York: ACM, 2023: 1469-1472.
[9] RAHMAN F, DEVANBU P. How, and why, process metrics are better[C]//Proceedings of the 2013 35th International Conference on Software Engineering. Piscataway: IEEE, 2013: 432-441.
[10] PECORELLI F, LUJAN S, LENARDUZZI V, et al. On the adequacy of static analysis warnings with respect to code smell prediction[J]. Empirical Software Engineering, 2022, 27(3): 64.
[11] DANGEL A, DODERO J, FOURNIER C, et al. PMD[EB/OL]. (2023-05-30) [2023-08-22]. https://pmd.github.io/.
[12] SILKENSEN E, KöDDERITZSCH L, MANCUSO N, et al. CheckStyle[EB/OL]. (2023-06-25) [2023-08-22]. https://checkstyle.sourceforge.io/.
[13] PUGH B, LOSKUTOV A. FindBugs[EB/OL]. (2015-03-06) [2023-08-22]. https://findbugs.sourceforge.net/index.html.
[14] FOWLER M, BECK K. Refactoring: improving the design of existing code[M]. 2nd ed. New York: Addison Wesley Professional, 2018: 75-87.
[15] JORAYEVA M, AKBULUT A, CATAL C, et al. Machine learning-based software defect prediction for mobile applications: a systematic literature review[J]. Sensors, 2022, 22(7): 2551.
[16] ARTEAU P, LOSKUTOV A, DODERO J, et al. SpotBugs[EB/OL]. (2023-06-27) [2023-09-22]. https://spotbugs.github.io/.
[17] 宫丽娜, 姜淑娟, 姜丽. 软件缺陷预测技术研究进展[J]. 软件学报, 2019, 30(10): 3090-3114.
GONG L N, JIANG S J, JIANG L. Research progress of software defect prediction[J]. Journal of Software, 2019, 30(10): 3090-3114.
[18] 田笑, 常继友, 张弛, 等. 开源软件缺陷预测方法综述[J]. 计算机研究与发展, 2023, 60(7): 1467-1488.
TIAN X, CHANG J Y, ZHANG C, et al. Survey of open-source software defect prediction method[J]. Journal of Computer Research and Development, 2023, 60(7): 1467-1488.
[19] 陈翔, 王莉萍, 顾庆, 等. 跨项目软件缺陷预测方法研究综述[J]. 计算机学报, 2018, 41(1): 254-274.
CHEN X, WANG L P, GU Q, et al. A survey on cross-project software defect prediction methods[J]. Chinese Journal of Computers, 2018, 41(1): 254-274.
[20] HOSSEINI S, TURHAN B, GUNARATHNA D. A systematic literature review and meta-analysis on cross project defect prediction[J]. IEEE Transactions on Software Engineering, 2019, 45(2): 111-147.
[21] XIA X, LO D, PAN S J, et al. HYDRA: massively compositional model for cross-project defect prediction[J]. IEEE Transactions on Software Engineering, 2016, 42(10): 977-998.
[22] SON L H, PRITAM N, KHARI M, et al. Empirical study of software defect prediction: a systematic mapping[J]. Symmetry, 2019, 11(2): 212.
[23] PASCARELLA L, PALOMBA F, BACCHELLI A. Fine-grained just-in-time defect prediction[J]. Journal of Systems and Software, 2019, 150: 22-36.
[24] HALSTEAD M H. Elements of Software science (operating and programming systems series)[M]. New York: Elsevier Science Inc., 1977: 31-55.
[25] MCCABE T J. A complexity measure[J]. IEEE Transactions on Software Engineering, 1976, 2(4): 308-320.
[26] KHOSHGOFTAAR S. Improving code churn predictions during the system test and maintenance phases[C]//Proceedings of the 1994 International Conference on Software Maintenance. Piscataway: IEEE, 1994: 58-67.
[27] NAGAPPAN N, BALL T, NAGAPPAN N, et al. Use of relative code churn measures to predict system defect density[C]//Proceedings of the 27th International Conference on Software Engineering. New York: ACM, 2005: 284-292.
[28] CHIDAMBER S R, KEMERER C F. A metrics suite for object oriented design[J]. IEEE Transactions on Software Engineering, 1994, 20(6): 476-493.
[29] SciTools.Understand[EB/OL]. (2021-10-01) [2023-09-22]. https://support.scitools.com/support/solutions/articles/70000582289-metrics-overview.
[30] MEHRPOUR S, LATOZA T D. Can static analysis tools find more defects?[J]. Empirical Software Engineering, 2023, 28(1): 5.
[31] LENARDUZZI V, PECORELLI F, SAARIMAKI N, et al. A critical comparison on six static analysis tools: detection, agreement, and precision[J]. Journal of Systems and Software, 2023, 198: 111575.
[32] JOHNSON B, SONG Y, MURPHY-HILL E, et al. Why don’t software developers use static analysis tools to find bugs? [C]//Proceedings of the 2013 35th International Conference on Software Engineering. Piscataway: IEEE, 2013: 672-681.
[33] YERRAMREDDY S, MORDAHL A, KOC U, et al. An empirical assessment of machine learning approaches for triaging reports of static analysis tools[J]. Empirical Software Engineering, 2023, 28(2): 28.
[34] YEDIDA R, KANG H J, TU H, et al. How to find actionable static analysis warnings: a case study with FindBugs[J]. IEEE Transactions on Software Engineering, 2023, 49(4): 2856-2872.
[35] TRAUTSCH A, HERBOLD S, GRABOWSKI J. A longitudinal study of static analysis warning evolution and the effects of PMD on software quality in Apache open source projects[J]. Empirical Software Engineering, 2020, 25(6): 5137-5192.
[36] YATISH S, JIARPAKDEE J, THONGTANUNAM P, et al. Mining software defects: should we consider affected releases?[C]//Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering. Piscataway: IEEE, 2019: 654-665.
[37] OMRI S, SINZ C. Deep learning for software defect prediction: a survey[C]//Proceedings of the 42nd IEEE/ACM International Conference on Software Engineering Workshops. New York: ACM, 2020: 209-214.
[38] WANG S M, HUANG L G, GAO A M, et al. Machine/deep learning for software engineering: a systematic literature review[J]. IEEE Transactions on Software Engineering, 2022, 49(3): 1188-1231.
[39] ESTEVES G, FIGUEIREDO E, VELOSO A, et al. Understanding machine learning software defect predictions[J]. Automated Software Engineering, 2020, 27(3/4): 369-392.
[40] PRABHA C L, SHIVAKUMAR N. Software defect prediction using machine learning techniques[C]//Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics. Piscataway: IEEE, 2020: 728-733.
[41] TANTITHAMTHAVORN C, MCINTOSH S, HASSAN A E, et al. An empirical comparison of model validation techniques for defect prediction models[J]. IEEE Transactions on Software Engineering, 2017, 43(1): 1-18.
[42] TANTITHAMTHAVORN C, MATSUMOTO K, HASSAN A E. Towards a better understanding of the impact of experimental components on defect prediction modelling[C]//Proceedings of the 2016 IEEE/ACM 38th International Conference on Software Engineering Companion. Piscataway: IEEE, 2016: 867-870.
[43] MANN H B, WHITNEY D R. On a test of whether one of two random variables is stochastically larger than the other[J]. The Annals of Mathematical Statistics, 1947, 18(1): 50-60.
[44] CLIFF N. Dominance statistics: ordinal analyses to answer ordinal questions[J]. Psychological Bulletin, 1993, 114(3): 494-509.
[45] FRIEDMAN M. A comparison of alternative tests of significance for the problem of m rankings[J]. The Annals of Mathematical Statistics, 1940, 11(1): 86-92.
[46] NEMENYI P B. Distribution-free multiple comparisons[D]. Princeton: Princeton University, 1963.
[47] WAN Z Y, XIA X, LO D, et al. Smart contract security: a practitioners perspective[C]//Proceedings of the 2021 IEEE/ ACM 43rd International Conference on Software Engineering. Piscataway: IEEE, 2021: 1410-1422.
[48] DEMŠAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30. |