计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (1): 237-244.DOI: 10.3778/j.issn.1673-9418.2403060

• 人工智能·模式识别 • 上一篇    下一篇

集成深度强化学习在股票指数投资组合优化中的应用分析

冀中,张文嘉   

  1. 1. 天津大学 电气自动化与信息工程学院,天津 300072
    2. 天津大学 佐治亚理工深圳学院,天津 300072
  • 出版日期:2025-01-01 发布日期:2024-12-31

Application Analysis of Ensemble Deep Reinforcement Learning in Portfolio Optimization of Stock Index

JI Zhong, ZHANG Wenjia   

  1. 1. School of Electrial and Information Engineering, Tianjin University, Tianjin 300072, China
    2. Georgia Tech Shenzhen Institute, Tianjin University, Tianjin 300072, China
  • Online:2025-01-01 Published:2024-12-31

摘要: 基于集成深度强化学习的投资组合选择是当前量化金融领域的关键技术之一。然而,目前采用上一窗口阶段最优指标决定下一阶段代理的集成滚动窗口方法存在一定的滞后性。为了有效应对这一不足,提出了双层嵌套集成深度强化学习方法。该方法对三种代理(优势演员-评论员、深度确定性策略梯度和近端策略优化)进行两层嵌套模式,第一层集成通过最优化夏普比率进行阶段模型选择,第二层通过加权投票的方法集成三种深度强化学习算法,从单次训练中收集多个模型快照,在训练期间利用这些模型进行集成预测。分别对上证50投资指数和道琼斯指数及其包含的股票进行了投资组合研究,将持有指数被动策略和均值方差投资组合策略作为基线策略。实验采用了投资组合价值、年化回报率、年化波动率、最大回撤和夏普比率等指标作为对比指标。结果表明,所提出的集成方法在实用性和有效性上表现出较好的性能。

关键词: 股票投资组合, 交易策略, 深度强化学习, 双层嵌套集成深度强化学习方法, 集成学习

Abstract: Portfolio selection based on ensemble deep reinforcement learning is one of the key technologies in the current field of quantitative finance. However, the existing ensemble rolling window method, which determines the next-stage agent based on the optimal indicators from the previous window, has certain lags. To effectively address this issue, a two-layer nested ensemble reinforcement learning method is proposed. This method adopts a two-layer nested pattern for three agents (actor-critic, deep deterministic policy gradient, and proximal policy optimization). The first layer of integration selects stage models through optimal Sharpe ratio optimization, while the second layer integrates the three deep reinforcement learning algorithms through weighted voting. Multiple model snapshots are collected from a single training, and these models are used for integrated prediction during training. This paper conducts a portfolio study on the Shanghai Stock Exchange 50 Investment Index and the Dow Jones Industrial Average Index along with the stocks they contain, respectively, taking the passive strategy of holding the index and the mean-variance portfolio strategy as baseline strategies. Metrics such as portfolio value, annualized return rate, annualized volatility, maximum drawdown, and Sharpe ratio are used as comparative indicators. The results show that the proposed ensemble method performs well in terms of practicality and effectiveness.

Key words: stock portfolio, trading strategy, deep reinforcement learning, two-layer nested ensemble deep reinforcement learning methods, ensemble learning