计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (1): 65-78.DOI: 10.3778/j.issn.1673-9418.2403063
王永威,魏德健,曹慧,姜良
出版日期:
2025-01-01
发布日期:
2024-12-31
WANG Yongwei, WEI Dejian, CAO Hui, JIANG Liang
Online:
2025-01-01
Published:
2024-12-31
摘要: 随着生物医学技术的发展,利用生物信号进行心力衰竭的早期诊断已成为提高患者生存率和降低治疗成本的关键策略。在此背景下,深度学习技术的迅猛发展为心力衰竭检测开辟了新路径。系统地综述了深度学习在心力衰竭检测中的最新进展和应用。概述了心力衰竭检测涉及的主要生物医学信号和公开数据集。详细分析了深度学习在心力衰竭诊断领域的应用及其发展,特别是对卷积神经网络和长短期记忆网络处理心电图、心率变异性、心音等关键生物医学信号的能力进行了深入分析,总结了这些技术的优势、局限性,并对各类模型性能进行了比较。探讨了通过融合多种人工智能技术所构建的混合模型在提升检测精度和模型泛化能力方面的潜力,以及如何利用模型的可解释性来增加检测过程的透明度,提升医生的信任度。最后总结了当前研究存在的不足,并对未来研究方向提出展望,强调了跨学科合作在推动心力衰竭检测技术进步中的重要性。
王永威, 魏德健, 曹慧, 姜良. 深度学习在心力衰竭检测中的应用综述[J]. 计算机科学与探索, 2025, 19(1): 65-78.
WANG Yongwei, WEI Dejian, CAO Hui, JIANG Liang. Review of Deep Learning Applications in Heart Failure Detection[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(1): 65-78.
[1] UCHQUN B S. Chronic heart failure in surkhandarya region and modern methods of its treatment[J]. Journal of Universal Science Research, 2023, 1(1): 12-16. [2] HEIDENREICH P A, BOZKURT B, AGUILAR D, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines[J]. Journal of the American College of Cardiology, 2022, 79(17): e263-e421. [3] 中国医师协会心力衰竭专业委员会, 国家心血管病专家委员会心力衰竭专业委员会, 中华心力衰竭和心肌病杂志编辑委员会. 心力衰竭生物标志物临床应用中国专家共识[J]. 中华心力衰竭和心肌病杂志, 2022, 6(3): 175-192. Chinese Heart Failure Association of Chinese Medical Doctor Association, National Expert Committee on Cardiovascular Diseases and Professional Committee on Heart Failure, Editorial Board of Chinese Journal of Heart Failure and Cardiomyopathy. Expert consensus on the clinical application of heart failure biomarkers in China[J]. Chinese Journal of Heart Failure and Cardiomyopathy, 2022, 6(3): 175-192. [4] SHIRAISHI Y, GOTO S, NIIMI N, et al. Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography[J]. Europace, 2023, 25(3): 922-930. [5] YAN J, WANG X. Unsupervised and semi-supervised learning: the next frontier in machine learning for plant systems biology[J]. The Plant Journal, 2022, 111(6): 1527-1538. [6] YU Z, WANG K, WAN Z, et al. Popular deep learning algorithms for disease prediction: a review[J]. Cluster Computing, 2023, 26(2): 1231-1251. [7] THUDUMU S, BRANCH P, JIN J, et al. A comprehensive survey of anomaly detection techniques for high dimensional big data[J]. Journal of Big Data, 2020, 7(1): 42. [8] GOLDBERGER A L, AMARAL L A, GLASS L, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals[J]. Circulation, 2000, 101(23): e215-e220. [9] BAIM D S, COLUCCI W S, MONRAD E S, et al. The BIDMC congestive heart failure database[DB/OL]. (2000)[2024-02-15]. https://physionet.org. [10] 王茜, 梁振士, 魏红霞. 现行国行标中的心电数据库[J]. 医疗装备, 2020, 33(11): 57-59. WANG Q, LIANG Z S, WEI H X. ECG database in current national bank standard[J]. Medical Equipment, 2020, 33(11): 57-59. [11] LAGUNA P, JANÉ R, CAMINAL P. Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database[J]. Computers and Biomedical Research, 1994, 27(1): 45-60. [12] WAGNER P, STRODTHOFF N, BOUSSELJOT R D, et al. PTB-XL, a large publicly available electrocardiography dataset[J]. Scientific Data, 2020, 7(1): 154. [13] LIU C, SPRINGER D, LI Q, et al. An open access database for the evaluation of heart sound algorithms[J]. Physiological Measurement, 2016, 37(12): 2181-2213. [14] LIU J, LIU K, PAN X, et al. A flexible semidry electrode for long-term, high-quality electrocardiogram monitoring[J]. Advanced Composites and Hybrid Materials, 2022, 6(1): 13. [15] BHAGWAT K, SUPRIYA M, RAVIKUMAR A. Map composition framework for synthetic P morphology[J]. Biomedical Signal Processing and Control, 2023, 79: 104063. [16] NAHAK S, PATHAK A, SAHA G. Evaluation of handcrafted features and learned representations for the classification of arrhythmia and congestive heart failure in ECG[J]. Biomedical Signal Processing and Control, 2023, 79: 104230. [17] NAAR J, MLCEK M, KRUGER A, et al. Acute severe heart failure reduces heart rate variability: an experimental study in a porcine model[J]. International Journal of Molecular Sciences, 2022, 24(1): 493. [18] MALIK M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use[J]. Circulation, 1996, 93(5): 1043-1065. [19] GOLDBERGER A L. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside[J]. Lancet, 1996, 347(9011): 1312-1314. [20] KUI H, PAN J, ZONG R, et al. Heart sound classification based on log Mel-frequency spectral coefficients features and convolutional neural networks[J]. Biomedical Signal Processing and Control, 2021, 69: 102893. [21] SUSIČ D, POGLAJEN G, GRADIŠEK A. Identification of decompensation episodes in chronic heart failure patients based solely on heart sounds[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 1009821. [22] RAI H M, CHATTERJEE K. Hybrid CNN-LSTM deep learning model and ensemble technique for automatic detection of myocardial infarction using big ECG data[J]. Applied Intelligence, 2022, 52(5): 5366-5384. [23] HOU B, YANG J, WANG P, et al. LSTM-based auto-encoder model for ECG arrhythmias classification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1232-1240. [24] CHEN C, HUA Z, ZHANG R, et al. Automated arrhythmia classification based on a combination network of CNN and LSTM[J]. Biomedical Signal Processing and Control, 2020, 57: 101819. [25] NING W, LI S, WEI D, et al. Automatic detection of congestive heart failure based on a hybrid deep learning algorithm in the Internet of medical things[J]. IEEE Internet of Things Journal, 2021, 8(16): 12550-12558. [26] ACHARYA U R, FUJITA H, LIH O S, et al. Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network[J]. Information Sciences, 2017, 405: 81-90. [27] ACHARYA U R, FUJITA H, OH S L, et al. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals[J]. Applied Intelligence, 2019, 49(1): 16-27. [28] ROSCH S, KRESOJA K P, BESLER C, et al. Characteristics of heart failure with preserved ejection fraction across the range of left ventricular ejection fraction[J]. Circulation, 2022, 146(7): 506-518. [29] ALKHODARI M, JELINEK H F, KARLAS A, et al. Deep learning predicts heart failure with preserved, mid-range, and reduced left ventricular ejection fraction from patient clinical profiles[J]. Frontiers in Cardiovascular Medicine, 2021, 8: 755968. [30] PANDEY A, KAGIYAMA N, YANAMALA N, et al. Deep-learning models for the echocardiographic assessment of diastolic dysfunction[J]. Cardiovascular Imaging, 2021, 14(10): 1887-1900. [31] MCHUGH K, DEVORE A D, WU J, et al. Heart failure with preserved ejection fraction and diabetes JACC state-of-the-art review[J]. Journal of the American College of Cardiology, 2019, 73(5): 602-611. [32] 姜良, 张程, 魏德健, 等. 深度学习在骨质疏松辅助诊断中的应用[J]. 计算机工程与应用, 2024, 60(7): 26-40. JIANG L, ZHANG C, WEI D J, et al. Deep learning in aided diagnosis of osteoporosis[J]. Computer Engineering and Applications, 2024, 60(7): 26-40. [33] ELTRASS A S, TAYEL M B, AMMAR A I. A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform[J]. Biomedical Signal Processing and Control, 2021, 65: 102326. [34] 何通能, 尤加庚, 陈德富. 基于DenseNet的单目图像深度估计[J]. 计算机测量与控制, 2019, 27(2): 233-236. HE T N, YOU J G, CHEN D F. Depth estimation from single monocular images based on DenseNet[J]. Computer Measurement & Control, 2019, 27(2): 233-236. [35] KRISHNAN D V G, SARADHI D M V V, KUMAR D S S, et al. Hybrid optimization based feature selection with DenseNet model for heart disease prediction[J]. International Journal of Electrical and Electronics Research, 2023, 11(2): 253-261. [36] LI Y, ZHANG Y, ZHAO L, et al. Combining convolutional neural network and distance distribution matrix for identification of congestive heart failure[J]. IEEE Access, 2018, 6: 39734-39744. [37] JI L, WEI Z, HAO J, et al. An intelligent diagnostic method of ECG signal based on Markov transition field and a ResNet[J]. Computer Methods and Programs in Biomedicine, 2023, 242: 107784. [38] LI D, TAO Y, ZHAO J, et al. Classification of congestive heart failure from ECG segments with a multi-scale residual network[J]. Symmetry, 2020, 12(12): 2019. [39] ZOU L, HUANG Z, YU X, et al. Automatic detection of congestive heart failure based on multiscale residual UNet: from centralized learning to federated learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 4001013. [40] MAITY A, PATHAK A, SAHA G. Transfer learning based heart valve disease classification from phonocardiogram signal[J]. Biomedical Signal Processing and Control, 2023, 85: 104805. [41] PAN X. Deep transfer learning applied to time-series classification for predicting heart failure worsening using electrocardiography[D]. Worcester Polytechnic Institute, 2020. [42] CREA F. Heart failure: from pathophysiology to deep learning-based outcome prediction[J]. European Heart Journal, 2023, 44(8): 629-632. [43] RAFI T H, KO Y W. HeartNet: self multihead attention mechanism via convolutional network with adversarial data synthesis for ECG-based arrhythmia classification[J]. IEEE Access, 2022, 10: 100501-100512. [44] SUN M, SI Y, YANG W, et al. Inter-patient congestive heart failure automatic recognition using attention-based multi-scale convolutional neural network[J]. Measurement, 2023, 218: 113239. [45] CHEN C, LI L, BEETZ M, et al. Large language model-informed ECG dual attention network for heart failure risk prediction[EB/OL]. [2024-02-16]. https://arxiv.org/abs/2403.10581. [46] LIU T, SI Y, YANG W, et al. Inter-patient congestive heart failure detection using ECG-convolution-vision transformer network[J]. Sensors, 2022, 22(9): 3283. [47] LAN E. Performer: a novel PPG-to-ECG reconstruction transformer for a digital biomarker of cardiovascular disease detection[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 1990-1998. [48] VAID A, JIANG J, SAWANT A, et al. A foundational vision transformer improves diagnostic performance for electrocardiograms[J]. NPJ Digital Medicine, 2023, 6(1): 108. [49] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9: 1735-1780. [50] 杨譞, 何占奇. 改进的两层BiLSTM的心电信号分割方法[J]. 东北大学学报(自然科学版), 2023, 44(12): 1705-1711. YANG X, HE Z Q. Improved two-layer BiLSTM electrocardiosignal segmentation method[J]. Journal of Northeastern University (Natural Science), 2023, 44(12): 1705-1711. [51] WANG H, GUO X, ZHENG Y, et al. An automatic approach for heart failure typing based on heart sounds and convolutional recurrent neural networks[J]. Physical and Engineering Sciences in Medicine, 2022, 45(2): 475-485. [52] DARMAWAHYUNI A, NURMAINI S, YUWANDINI M, et al. Congestive heart failure waveform classification based on short time-step analysis with recurrent network[J]. Informatics in Medicine Unlocked, 2020, 21: 100441. [53] AKDAĞ S, KUNCAN F, KAYA Y. A new approach for congestive heart failure and arrhythmia classification using downsampling local binary patterns with LSTM[J]. Turkish Journal of Electrical Engineering and Computer Sciences, 2022, 30(6): 2145-2164. [54] ÇALıŞKAN A. A new ensemble approach for congestive heart failure and arrhythmia classification using shifted one-dimensional local binary patterns with long short-term memory[J]. The Computer Journal, 2022, 65(9): 2535-2546. [55] KAYA Y, KUNCAN F, TEKIN R. A new approach for congestive heart failure and arrhythmia classification using angle transformation with LSTM[J]. Arabian Journal for Science and Engineering, 2022, 47(8): 10497-10513. [56] ANDERSON J R, BETZ J. A hybrid model of categorization[J]. Psychonomic Bulletin & Review, 2001, 8(4): 629-647. [57] KHADE S, SUBHEDAR A, CHOUDHARY K, et al. A system to detect heart failure using deep learning techniques[J]. International Research Journal of Engineering and Technology, 2019, 6(6): 384-387. [58] ZHUANG Z, ZHANG G, DONG W, et al. Intelligent fault detection of high-speed railway turnout based on hybrid deep learning[C]//Proceedings of the 31st Australasian Joint Conference on Artificial Intelligence: Advances in Artificial Intelligence. Cham: Springer, 2018: 98-103. [59] LI D, LI X, ZHAO J, et al. Automatic staging model of heart failure based on deep learning[J]. Biomedical Signal Processing and Control, 2019, 52: 77-83. [60] LIH O S, JAHMUNAH V, SAN T R, et al. Comprehensive electrocardiographic diagnosis based on deep learning[J]. Artificial Intelligence in Medicine, 2020, 103: 101789. [61] KUSUMA S, JOTHI K R. ECG signals-based automated diagnosis of congestive heart failure using deep CNN and LSTM architecture[J]. Biocybernetics and Biomedical Engineering, 2022, 42(1): 247-257. [62] YASMEEN S, DORASANAMMA P, GAYATHRI P, et al. Detection of chronic heart failure using unified machine learning and deep learning[J]. Journal of Cardiovascular Disease Research, 2023, 14(5): 41-53. [63] YANG W, SI Y, ZHANG G, et al. A novel method for automated congestive heart failure and coronary artery disease recognition using THC-Net[J]. Information Sciences, 2021, 568: 427-447. [64] YANG W, WANG D, ZOU S, et al. Automatic recognition of coronary artery disease and congestive heart failure using a multi-granularity cascaded hybrid network[J]. Biomedical Signal Processing and Control, 2023, 86: 105332. [65] GANESHKUMAR M, RAVI V, SOWMYA V, et al. Explainable deep learning-based approach for multilabel classification of electrocardiogram[J]. IEEE Transactions on Engineering Management, 2023, 70(8): 2787-2799. [66] PORUMB M, IADANZA E, MASSARO S, et al. A convolutional neural network approach to detect congestive heart failure[J]. Biomedical Signal Processing and Control, 2020, 55: 101597. [67] ZHANG C J, TANG F Q, CAI H P, et al. Heart failure classification using deep learning to extract spatiotemporal features from ECG[J]. BMC Medical Informatics and Decision Making, 2024, 24(1): 17. [68] ZHANG X, QIAN B, LI X, et al. An interpretable fast model for predicting the risk of heart failure[C]//Proceedings of the 2019 SIAM International Conference on Data Mining. Philadelphia: SIAM, 2019: 576-584. [69] WANG L, ZHOU X. Detection of congestive heart failure based on LSTM-based deep network via short-term RR intervals[J]. Sensors, 2019, 19(7): 1502. [70] MORENO-SÁNCHEZ P A. Improvement of a prediction model for heart failure survival through explainable artificial intelligence[J]. Frontiers in Cardiovascular Medicine, 2023, 10: 1219586. |
[1] | 程佳琳, 袁得嵛, 孙泽宇, 陈梓彦. 基于SDNE嵌入表达的深度学习跨网络身份关联方法[J]. 计算机科学与探索, 2025, 19(2): 417-428. |
[2] | 马倩, 董武, 曾庆涛, 张艳, 陆利坤, 周子镱. 图像重定向及客观质量评价方法综述[J]. 计算机科学与探索, 2025, 19(2): 316-333. |
[3] | 陈冲, 朱啸宇, 王芳, 许雅倩, 张伟. 物理引导的深度学习研究综述:进展、挑战和展望[J]. 计算机科学与探索, 2025, 19(2): 277-294. |
[4] | 孟祥福, 石皓源. 基于Transformer模型的时序数据预测方法综述[J]. 计算机科学与探索, 2025, 19(1): 45-64. |
[5] | 郭佳霖, 智敏, 殷雁君, 葛湘巍. 图像处理中CNN与视觉Transformer混合模型研究综述[J]. 计算机科学与探索, 2025, 19(1): 30-44. |
[6] | 杨晨, 徐昊, 朱佳伟, 吴秦, 柴志雷. LightGCNet:基于轻量化卷积网络的深度色域压缩算法[J]. 计算机科学与探索, 2025, 19(1): 196-210. |
[7] | 吴梦可, 高心丹. 双编码端高分辨率遥感影像语义分割算法[J]. 计算机科学与探索, 2025, 19(1): 187-195. |
[8] | 杨梅君, 姚若侠, 谢娟英. CARFB:即插即用的目标检测模块[J]. 计算机科学与探索, 2025, 19(1): 223-236. |
[9] | 方博儒, 仇大伟, 白洋, 刘静. 表面肌电信号在肌肉疲劳研究中的应用综述[J]. 计算机科学与探索, 2024, 18(9): 2261-2275. |
[10] | 连哲, 殷雁君, 智敏, 徐巧枝. 自然场景文本检测中可微分二值化技术综述[J]. 计算机科学与探索, 2024, 18(9): 2239-2260. |
[11] | 徐彦威, 李军, 董元方, 张小利. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18(9): 2221-2238. |
[12] | 李子奇, 苏宇轩, 孙俊, 张永宏, 夏庆锋, 尹贺峰. 基于深度学习的多聚焦图像融合方法前沿进展[J]. 计算机科学与探索, 2024, 18(9): 2276-2292. |
[13] | 许智宏, 张惠斌, 董永峰, 王利琴, 王旭. 问题特征增强的知识追踪模型[J]. 计算机科学与探索, 2024, 18(9): 2466-2475. |
[14] | 叶庆文, 张秋菊. 采用通道像素注意力的多标签图像识别[J]. 计算机科学与探索, 2024, 18(8): 2109-2117. |
[15] | 汪有崧, 裴峻鹏, 李增辉, 王伟. 深度学习的视网膜血管分割研究综述[J]. 计算机科学与探索, 2024, 18(8): 1960-1978. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||